• Title/Summary/Keyword: SNP marker

Search Result 278, Processing Time 0.03 seconds

Single Nucleotide Polymorphism Marker Discovery from Transcriptome Sequencing for Marker-assisted Backcrossing in Capsicum

  • Kang, Jin-Ho;Yang, Hee-Bum;Jeong, Hyeon-Seok;Choe, Phillip;Kwon, Jin-Kyung;Kang, Byoung-Cheorl
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.535-543
    • /
    • 2014
  • Backcross breeding is the method most commonly used to introgress new traits into elite lines. Conventional backcross breeding requires at least 4-5 generations to recover the genomic background of the recurrent parent. Marker-assisted backcrossing (MABC) represents a new breeding approach that can substantially reduce breeding time and cost. For successful MABC, highly polymorphic markers with known positions in each chromosome are essential. Single nucleotide polymorphism (SNP) markers have many advantages over other marker systems for MABC due to their high abundance and amenability to genotyping automation. To facilitate MABC in hot pepper (Capsicum annuum), we utilized expressed sequence tags (ESTs) to develop SNP markers in this study. For SNP identification, we used Bukang $F_1$-hybrid pepper ESTs to prepare a reference sequence through de novo assembly. We performed large-scale transcriptome sequencing of eight accessions using the Illumina Genome Analyzer (IGA) IIx platform by Solexa, which generated small sequence fragments of about 90-100 bp. By aligning each contig to the reference sequence, 58,151 SNPs were identified. After filtering for polymorphism, segregation ratio, and lack of proximity to other SNPS or exon/intron boundaries, a total of 1,910 putative SNPs were chosen and positioned to a pepper linkage map. We further selected 412 SNPs evenly distributed on each chromosome and primers were designed for high throughput SNP assays and tested using a genetic diversity panel of 27 Capsicum accessions. The SNP markers clearly distinguished each accession. These results suggest that the SNP marker set developed in this study will be valuable for MABC, genetic mapping, and comparative genome analysis.

Association of SNP Marker in the Leptin Gene with Carcass and Meat Quality Traits in Korean Cattle

  • Shin, S.C.;Chung, E.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • Leptin is the hormone product of the obese gene and is synthesized and secreted predominantly by white adipocytes and relates to the feedback system that regulates long-term body fat weight and composition. Therefore, the leptin gene could be an excellent candidate gene controlling fat deposition, carcass traits and meat quality in beef cattle. The objective of this study was to evaluate the association of 3 SNPs (A1127T and C1180T in exon 2 and C3100T in exon 3) in the bovine leptin gene with carcass and meat quality traits in Korean cattle. The C1180T SNP was associated with backfat thickness (BF) and marbling score (MS) (p<0.05). Animals with the genotype CC had higher BF than animals with TT genotype and higher MS compared with CT and TT genotypes. No significant associations were observed between the C3100T SNP and any carcass and meat quality traits analyzed. The effect of the A1127T SNP was not analyzed because the TT genotype was not detected and the AT genotype showed only 1.0% frequency. These results suggest that the C1180T SNP of the leptin gene may be useful as a genetic marker for carcass and meat quality traits in Korean cattle.

Restricted partition method and gene-gene interaction analysis with Hanwoo economic traits (제한된 분할방법과 한우 경제형질에서 유전자들간의 상호작용)

  • Lee, Jea-Young;Kim, Dong-Chul
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.1
    • /
    • pp.171-178
    • /
    • 2009
  • In order to make the high quality Korean cattle, it has been identified the gene which influence to various economic characters. In this paper, we introduce Restricted Partition Method for gene-gene interaction analysis. Further, economic traits, longissimus muscle dorsi area (LMA), carcass cold weight (CWT) and average daily gain (ADG) are applied with Restricted Partition Method (RPM). The SNP (19_1)$^*$SNP (28_2) was selected and was best marker on Single nucleotide polymorphisms (SNPs). It also influenced SNP (19_1)$^*$SNP (28_2) was an very important marker for economic character and to make the thing know it became.

  • PDF

MarSel : The LD-based Marker Selection System for the Large-scale Datasets (MarSel : Large-scale Dataset에 대한 LD기반의 Marker 선택 시스템)

  • 김상준;여상수;김성권
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10b
    • /
    • pp.253-255
    • /
    • 2004
  • 인간(human)에게 나타나는 다양성(variation)은 인체의 유전체(genome) 안에서 발생된 SNP(Single Nucleotide Polymorphism)에 의해 나타난다고 알려져 있다. 유전체내의 SNP과 다양성에 대한 연관 연구(Associate study)를 할 때에 약 30여 억 개로 추정되는 염기서열(DNA sequence)물 모두 분석한다면 많은 비용과 시간을 필요로 할 것이다. 이런 비용과 시간을 줄이기 위친 적은 수의 대표 SNP(=tagSNP)을 찾는 연구가 현재 진행 중이다. 우리는 LD계수|D;|을 block 분할에 이용하여 생물학적인 의미를 부여한 후, 전산적인 최적해를 찾는 접근을 이용했다. 또한, 기존 연구에서는 large-scale data에 대한 처리가 불가능해서 chromosome의 일부분의 데이터에 대해서안 분석이 시도되었다. 더욱 광범위한 분석을 위해서 chromosome 단위의 처리가 필요하다. 우리는 chromosome단위의 SNP data를 한 번에 처리가 가능한 시스템인 MarSel를 구현하였다

  • PDF

Distinguishing the Korean Silage Corn Varieties through Development of PCR-Based SNP Marker (SNP마커 개발을 통한 사료용 옥수수 품종판별)

  • Kim, Sang Gon;Lee, Jin-Seok;Bae, Hwan Hee;Kim, Jung-Tae;Son, Beom-Young;Baek, Seong-Bum
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.37 no.2
    • /
    • pp.168-175
    • /
    • 2017
  • Single nucleotide polymorphisms (SNP) markers allow rapid screening of crop varieties in early growth stages. We developed a modified SNP PCR procedure for assaying SNPs in maize. For SNP marker development, we chosen 200 SNP sites from MaizeGDB database, and designed two base pair mismatch primers based on putative SNP site of B73 genome sequence. PCR products size was from 200 to 500 bp or was not shown in the case of SNP site existing in Korean silage corns. Using previously discovered 16 primer sets, we investigated distinctness of 50 silage F1 hybrid corns including 10 Korean silage corns developed by RDA such as Gangdaok, Kwangpyeongok, Dapyeongok, Andaok, Yanganok, Singwangok, Jangdaok, Cheongdaok, Pyeonggangok, and Pyeonganok as well as 40 foreign commercial silage corns. From cluster analysis, we confirmed that 10 Korean silage F1 hybrid corns were clearly distinguished except for Singwangok, P1395, and several foreign commercial corns, and selected minimum SNP primer combination for Gangdaok, Jangdaok, Pyeonggangok, and Pyeonganok. Therefore, development of SNP marker sets might be faster, cheaper, and feasible breed discrimination method through simple PCR and agarose gel electrophoresis.

The Construction of a Chinese Cabbage Marker-assisted Backcrossing System Using High-throughput Genotyping Technology

  • Kim, Jinhee;Kim, Do-Sun;Lee, Eun Su;Ahn, Yul-Kyun;Chae, Won Byoung;Lee, Soo-Seong
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.232-242
    • /
    • 2017
  • The goal of marker-assisted backcrossing (MAB) is to significantly reduce the number of breeding generations required by using genome-based molecular markers to select for a particular trait; however, MAB systems have only been developed for a few vegetable crops to date. Among the types of molecular markers, SNPs (single-nucleotide polymorphisms) are primarily used in the analysis of genetic diversity due to their abundance throughout most genomes. To develop a MAB system in Chinese cabbage, a high-throughput (HT) marker system was used, based on a previously developed set of 468 SNP probes (BraMAB1, Brassica Marker Assisted Backcrossing SNP 1). We selected a broad-spectrum TuMV (Turnip mosaic virus) resistance (trs) Chinese cabbage line (SB22) as a donor plant, constructing a $BC_1F_1$ population by crossing it with the TuMV-susceptible 12mo-682-1 elite line. Foreground selection was performed using the previously developed trsSCAR marker. Background selection was performed using 119 SNP markers that showed clear polymorphism between donor and recipient plants. The background genome recovery rate (% recurrent parent genome recovery; RPG) was good, with three of 75 $BC_1F_1$ plants showing a high RPG rate of over 80%. The background genotyping result and the phenotypic similarity between the recurrent parent and $BC_1F_1$ showed a correlation. The plant with the highest RPG recovery rate was backcrossed to construct the $BC_2F_1$ population. Foreground selection and background selection were performed using 169 $BC_2F_1$ plants. This study shows that, using MAB, we can recover over 90% of the background genome in only two generations, highlighting the MAB system using HT markers as a highly efficient Brassica rapa backcross breeding system. This is the first report of the application of a SNP marker set to the background selection of Chinese cabbage using HT SNP genotyping technology.

Development of an SNP set for marker-assisted breeding based on the genotyping-by-sequencing of elite inbred lines in watermelon (수박 엘리트 계통의 GBS를 통한 마커이용 육종용 SNP 마커 개발)

  • Lee, Junewoo;Son, Beunggu;Choi, Youngwhan;Kang, Jumsoon;Lee, Youngjae;Je, Byoung Il;Park, Younghoon
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.242-249
    • /
    • 2018
  • This study was conducted to develop an SNP set that can be useful for marker-assisted breeding (MAB) in watermelon (Citrullus. lanatus L) using Genotyping-by-sequencing (GBS) analysis of 20 commercial elite watermelon inbreds. The result of GBS showed that 77% of approximately 1.1 billion raw reads were mapped on the watermelon genome with an average mapping region of about 4,000 Kb, which indicated genome coverage of 2.3%. After the filtering process, a total of 2,670 SNPs with an average depth of 31.57 and the PIC (Polymorphic Information Content) value of 0.1~0.38 for 20 elite inbreds were obtained. Among those SNPs, 55 SNPs (5 SNPs per chromosome that are equally distributed on each chromosome) were selected. For the understanding genetic relationship of 20 elite inbreds, PCA (Principal Component Analysis) was carried out with 55 SNPs, which resulted in the classification of inbreds into 4 groups based on PC1 (52%) and PC2 (11%), thus causing differentiation between the inbreds. A similar classification pattern for PCA was observed from hierarchical clustering analysis. The SNP set developed in this study has the potential for application to cultivar identification, F1 seed purity test, and marker-assisted backcross (MABC) not only for 20 elite inbreds but also for diverse resources for watermelon breeding.

Identification of a Single Nucleotide Polymorphism (SNP) Marker for the Detection of Enhanced Honey Production in Hoenybee (수밀력 우수 꿀벌 계통 판별을 위한 계통 특이 분자마커 개발)

  • Kim, Hye-Kyung;Lee, Myeong-Lyeol;Lee, Man-Young;Choi, Yong-Soo;Kim, Dongwon;Kang, Ah Rang
    • Journal of Apiculture
    • /
    • v.32 no.3
    • /
    • pp.147-154
    • /
    • 2017
  • Honeybees (Apis mellifera) are common pollinators and important insects studied in agriculture, ecology and basic research. Recently, RDA (Rural Development Administration) and YIRI (Yecheon-gun Industrial Insect Research Institute) have been breeding a triple crossbred honey bee named Jangwon, which have the ability to produce superior quality honey. In this study, we identified a single nucleotide polymorphism (SNP) marker in the genome of Jangwon honeybee, particularly, in the paternal line (D line). Initially, we performed Sequence-Based Genotyping (SBG) using the Illumina Hiseq 2500 in 5 honeybee inbred lines; A, C, D, E, and F; and obtained 1,029 SNPs. Seventeen SNPs for each inbred line were generated and selected after further filtering of the SNP dataset. The 17 SNP markers validated by performing TaqMan probe-based real-time PCR and genotyping analysis was conducted. Genotyping analysis of the 5 honeybee inbred lines and one hybrid line, $D{\times}F$, revealed that one set of SNP marker, AmD9, precisely discriminated the inbred line D from the others. Our results suggest that the identified SNP marker, AmD9, is successful in distinguishing the inbred honeybee lines D, and can be directly used for genotyping and breeding applications.

A Genome-wide Association Study of Preferred Primal Cuts of Hanwoo Cattle Using Single-step GBLUP (한우 부분육 선호부위에 대한 ssGBLUP을 활용한 GWAS 분석)

  • Lee, Jae Gu;Park, Byoungho;Park, Mi Na;Alam, M.;Kim, Sidong;Do, Changhee;Choi, Tae Jeong
    • Journal of agriculture & life science
    • /
    • v.50 no.3
    • /
    • pp.99-117
    • /
    • 2016
  • Data on primal cuts were collected from 1,829 steers of Hanwoo progeny testing programs, between 2010 and 2015 for the ssGWAS. SNP data were analyzed by using Illumina Bovine 50K Beadchip. The SNP data that matches with phenotype data was 674 animals. As a first step, the genomic estimated breeding value(GEBV) of the loin and rib cuts were estimated, which was used in the estimation of SNP marker effects and their variances related to the traits. Then, the estimated variance explained by each marker was expressed as a proportion to the total genetic variance. Finally, the SNP loci and their significance to any possible QTL were examined. Among the 20 best SNP loci explaining a larger proportion of SNP variance to the total genetic variance for tender loin yield, the region between 12,812,193 ~ 12,922,313bp on BTA 10 harbored a cluster of SNPs that explained about 7.32 to 7.34% of the total genetic variance. For strip loin yield, a peak for higher effects for multiple SNPs was found in BTA24, between 38,158,543 and 38,347,278bp distances, which explained about 8.36 to 8.56% of the observed variance for this trait. For loin yield had relatively smaller effects in terms of the total genetic variance. Therefore, loin yield might be affected by a few loci with moderate effects and many other loci with smaller effects across the genome.

How Many SNPs Should Be Used for the Human Phylogeny of Highly Related Ethnicities? A Case of Pan Asian 63 Ethnicities

  • Ghang, Ho-Young;Han, Young-Joo;Jeong, Sang-Jin;Bhak, Jong;Lee, Sung-Hoon;Kim, Tae-Hyung;Kim, Chul-Hong;Kim, Sang-Soo;Al-Mulla, Fahd;Youn, Chan-Hyun;Yoo, Hyang-Sook;The HUGO Pan-Asian SNP Consortium, The HUGO Pan-Asian SNP Consortium
    • Genomics & Informatics
    • /
    • v.9 no.4
    • /
    • pp.181-188
    • /
    • 2011
  • In planning a model-based phylogenic study for highly related ethnic data, the SNP marker number is an important factor to determine for relationship inferences. Genotype frequency data, utilizing a sub sampling method, from 63 Pan Asian ethnic groups was used for determining the minimum SNP number required to establish such relationships. Bootstrap random sub-samplings were done from 5.6K PASNPi SNP data. DA distance was calculated and neighbour-joining trees were drawn with every re-sampling data set. Consensus trees were made with the same 100 sub-samples and bootstrap proportions were calculated. The tree consistency to the one obtained from the whole marker set, improved with increasing marker numbers. The bootstrap proportions became reliable when more than 7,000 SNPs were used at a time. Within highly related ethnic groups, the minimum SNPs number for a robust neighbor-joining tree inference was about 7,000 for a 95% bootstrap support.