• Title/Summary/Keyword: SNP marker

Search Result 278, Processing Time 0.033 seconds

Characterization of Phenotypic Traits and Application of Fruit Flesh Color Marker in Melon (Cucumis melo L.) Accessions (멜론 유전자원의 생육 평가와 과육색 유전형 분석)

  • Bae, Ik Hyun;Kang, Han Sol;Jeong, Woo Jin;Ryu, Jae Hwang;Lee, Oh Hum;Chung, Hee
    • Korean Journal of Plant Resources
    • /
    • v.34 no.5
    • /
    • pp.478-490
    • /
    • 2021
  • We aimed to generate basic breeding data for melon (Cucumis melo L.). A total of 219 melon accessions conserved at the National Agrobiodiversity Center (NAC) in Rural Development Administration (RDA) were used in this study, of which 72 (33%) were collected from India. The majority of accessions showed orange (42%) and white (36%) flesh color. In addition to phenotypic evaluations, the accessions were genotyped using a molecular marker for the carotenoid biosynthesis gene CmOr. DNA fragments of the expected size were amplified in 205 out of 219 accessions. Digestion of the PCR products with HinfI restriction endonuclease showed 100% concordance between phenotype and genotype in green-fleshed accessions, but 98%, 97%, and 80% concordance in orange-, white-, and creamy-fleshed accessions, respectively. Sequence analysis revealed single nucleotide changes in the three positions of SNP1, SNP2 and SNP1int in the CmOr gene among accessions. These newly found alleles suggest that there are multiple mechanisms in determining fruit flesh color in melon. Also, the phenotype data of diverse accessions obtained in this study will be a valuable source for melon breeding.

Evaluation of Methods to Analyze SNP-based Association Studies in a DNA-Pooling Experiment with Preferential Amplification

  • Ahn, Chul;Lee, Kyu-Sang
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2005.09a
    • /
    • pp.395-398
    • /
    • 2005
  • Genetic association case-control studies using DNA pools are efficient ways of detecting association between a marker allele and disease status. DNA pooling is an efficient screening method for locating susceptibility genes associated with the disease. However, DNA pooling is efficient only when allele frequency estimation is done precisely and accurately. Through the evaluation of empirical type I errors and empirical powers by simulation, we will evaluate the methods that correct for preferential amplification of nucleotides when estimating the allele frequency of single-nucleotide polymorphisms.

  • PDF

The rs196952262 Polymorphism of the AGPAT5 Gene is Associated with Meat Quality in Berkshire Pigs

  • Park, Woo Bum;An, Sang Mi;Yu, Go Eun;Kwon, Seulgi;Hwang, Jung Hye;Park, Da Hye;Kang, Deok Gyeong;Kim, Tae Wan;Park, Hwa Chun;Ha, Jeongim;Kim, Chul Wook
    • Food Science of Animal Resources
    • /
    • v.37 no.6
    • /
    • pp.926-930
    • /
    • 2017
  • High-quality meat is of great economic importance to the pig industry. The 1-acylglycerol-3-phosphate-O-acyltransferase 5 (AGPAT5) enzyme converts lysophosphatidic acid to phosphatidic acid in the mitochondrial membrane. In this study, we found that the porcine AGPAT5 gene was highly expressed in muscle tissue, influencing meat characteristics, and we also identified a non-synonymous single-nucleotide polymorphism (nsSNP) (rs196952262, c.673 A>G) in the gene, associated with a change of isoleucine 225 to valine. The presence of this nsSNP was significantly associated with meat color (lightness), lower cooking loss, and lower carcass temperatures 1, 4, and 12 h after slaughter (items T1, T4, and T12 on the recognized quality scale, respectively), and tended to increase backfat thickness and the water-holding capacity. These results suggest that nsSNP (c.673A>G) of the AGPAT5 gene is a potential genetic marker of high meat quality in pigs.

Cloning and DNA Sequences Anaylsis of Mitochondrial NADH Dehydrogenase Subunit 3 from Korean Chum Salmon, Oncorhynchus keta (한국산 연어의 미토콘드리아 NADH Dehydrogengse Subunit 3 영역의 클로닝 및 DNA 염기서열 분석)

  • CHOI Yoon-Sil;LEE Youn-Ho;JIN Deuk-Hee
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.2
    • /
    • pp.94-99
    • /
    • 2003
  • Mitochondrial DNAs has been used frequently as genetic markers for the population genetic studies of salmonid fishes. Samples used in this experiment were chum salmons (Oncorhynchus keta) from Korea. We analyzed variation of mitochondrial NADH dehydrogenase subunit 3 gene (ND3) among 4 individuals of the Korea population. Genomic DNA was extracted from the liver of the chum salmon samples. Then, the ND3 gene was amplified by polymerase chain reaction (PCR) including the 3' region of cytochrome oxidase III gene (COIII) and the 5` region of NADH dehydrogenase subunit 4L gene (ND4L). The size of the PCR product was 752 Up and the sequences showed some genetic variation among those four individuals. Genetic variations were observed in 7 sites as single nucleotide polymorphism (SNP). Within the open reading frame of the ND3 gene which encodes 116 amino acids, 5 nucleotide substitutions were found. Both transitional and transversional changes occurred more frequently with transitional changes. Comparison of these sequences with the others of a Japanese chum salmon in GenBank showed 5 sites of SNPs. This study provided the basic information of SNP in ND3 gene among Korean chum salmons and demonstrated the possible use of the SNP data as a genetic marker.

Identification of single nucleotide polymorphisms in the ACADS gene and their relationships with economic traits in Hanwoo (한우의 ACADS 유전자내의 SNP 탐색 및 경제형질과의 연관성 분석)

  • Oh, Jae-Don;Cheong, Il-Cheong;Sohn, Young-Gon;Kong, Hong-Sik
    • Korean Journal of Agricultural Science
    • /
    • v.39 no.2
    • /
    • pp.219-226
    • /
    • 2012
  • The acyl-CoA dehydrogenase, C-2 to C-3 short chain (ACADS) gene is known to be related with fat metabolism, especially coverts the fat to the energy sources in cattle. In human, the mutations in this gene cause SCAD deficiency, which is one of the fatty acid metabolism disorders. The ACADS gene is located on bovine chromosome 17. The objective of this study was to identify SNPs in Hanwoo ACADS gene and identify the relationships with economic traits. In this study, two SNPs, T1570G SNP in exon 2 and G13917A SNP in exon 4, were observed. Moreover, in the coding region, 2 missense mutations, T (Cys) ${\rightarrow}$ G (Trp) mutation at 1570 bp and G (Arg) ${\rightarrow}$ A (Gln) mutation at 13917 bp, were observed. These mutations were subjected to the PCR-RFLP for typing 198 Hanwoo animals. The observed genotype frequency for T1570G was 0.135 (TT), 0.860 (TG) and 0.005 (GG), respectively. Also, 0.900 (GG) and 0.100 (GA) were observed for the G13917A mutation. The association of these SNPs with four economic traits, CW (Carcass Weight), BF (Backfat Thickness), LMA (Longissimus Muscle Area), MS (Marbling Score), were also observed. The results indicated that no significant results were observed in all four traits (P>0.05). This might indicate that further studies are ultimately needed to use the SNPs in ACADS gene in lager populations for effectively used for the marker assisted selection.

Association of FASN and SCD genes with fatty acid composition in broilers

  • Maharani, Dyah;Seo, Dong-Won;Choi, Nu-Ri;Jin, Shil;Cahyadi, Muhammad;Jo, Cheorun;Lee, Jun-Heon
    • Korean Journal of Agricultural Science
    • /
    • v.40 no.3
    • /
    • pp.215-220
    • /
    • 2013
  • Fatty acids (FAs) were considered in activating nuclear hormone receptors that play significant roles in the cellular lipid metabolism by the regulation of several genes. Previously, fatty acid synthase (FASN) and stearoyl-CoA desaturase (SCD) genes have been known to regulating the FA metabolism. In this study, associations of FASN and SCD genes with fatty acid (FA) composition in broilers were investigated. Tissue samples from 95 Cobb 500 broilers were used for DNA extraction. The g.1222 A>G SNP located in intron 42 of FASN gene and 2 SNPs in SCD gene, one in exon 2 (g.3728A>G) and the other in exon 4 (g.12903G>A), were subjected for genotyping using PCR-RFLP method. One of the SNPs in SCD gene, SNP g.3728A>G had significant association with myristoleic acid (C14:1; P<0.05), palmitic acid (C16:0; P<0.05), palmitoleic acid (C16:1; P<0.05) and saturated FA (SFA; P<0.05). However, the SNP g.1222A>G in FASN gene had only suggestive association with arachidic acid (C20:0; P=0.08). The findings in this study suggest that the SNP in exon 2 of SCD gene can be used as a molecular marker for selecting birds having desirable FA composition in broilers.

Single nucleotide polymorphism-based analysis of the genetic structure of the Min pig conserved population

  • Meng, Fanbing;Cai, Jiancheng;Wang, Chunan;Fu, Dechang;Di, Shengwei;Wang, Xibiao;Chang, Yang;Xu, Chunzhu
    • Animal Bioscience
    • /
    • v.35 no.12
    • /
    • pp.1839-1849
    • /
    • 2022
  • Objective: The study aims to uncover the genetic diversity and unique genetic structure of the Min pig conserved population, divide the nucleus conservation population, and construct the molecular pedigree. Methods: We used KPS Porcine Breeding Chip v1 50K for SNP detection of 94 samples (31♂, 63♀) in the Min pig conserved population from Lanxi breeding Farm. Results: The polymorphic marker ratio (PN), the observed heterozygosity (Ho), and the expected heterozygosity (He) were 0.663, 0.335, and 0.330, respectively. The pedigree-based inbreeding coefficients (FPED) was significantly different from those estimated from runs of homozygosity (FROH) and single nucleotide polymorphism (FSNP) based on genome. The Pearson correlation coefficient between FROH and FSNP was significant (p<0.05). The effective population content (Ne) showed a continuously decreasing trend. The rate of decline was the slowest from 200 to 50 generations ago (r = 0.95), then accelerated slightly from 50 to 5 generations ago (1.40

Synergic induction of human periodontal ligament fibroblast cell death by nitric oxide and N-methyl-D-aspartic acid receptor antagonist

  • Seo, Tae-Gun;Cha, Se-Ho;Woo, Kyung-Mi;Park, Yun-Soo;Cho, Yun-Mi;Lee, Jeong-Soon;Kim, Tae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • Purpose: Nitric oxide (NO) has been known as an important regulator of osteoblasts and periodontal ligament cell activity. This study was performed to investigate the relationship between NO-mediated cell death of human periodontal ligament fibroblasts (PDLFs) and N-methyl-D-aspartic acid (NMDA) receptor antagonist (+)-5-methyl-10, 11-dihydro-5H-dibenzo[a,d]cyclohepten-5, 10-imine hydrogen maleate (MK801). Methods: Human PDLFs were treated with various concentrations (0 to 4 mM) of sodium nitroprusside (SNP) with or without $200\;{\mu}M$ MK801 in culture media for 16 hours and the cell medium was then removed and replaced by fresh medium containing MTS reagent for cell proliferation assay. Western blot analysis was performed to investigate the effects of SNP on the expression of Bax, cytochrome c, and caspase-3 proteins. The differences for each value among the sample groups were compared using analysis of variance with 95% confidence intervals. Results: In the case of SNP treatment, as a NO donor, cell viability was significantly decreased in a concentration-dependent manner. In addition, a synergistic effect was shown when both SNP and NMDA receptor antagonist was added to the medium. SNP treated PDLFs exhibited a round shape in culture conditions and were dramatically reduced in cell number. SNP treatment also increased levels of apoptotic marker protein, such as Bax and cytochrome c, and reduced caspase-3 in PDLFs. Mitogen-activated protein kinase signaling was activated by treatment of SNP and NMDA receptor antagonist. Conclusions: These results suggest that excessive production of NO may induce apoptosis and that NMDA receptor may modulate NO-induced apoptosis in PDLFs.