• Title/Summary/Keyword: SNP Detection

Search Result 78, Processing Time 0.03 seconds

Toward High Utilization of Heterogeneous Computing Resources in SNP Detection

  • Lim, Myungeun;Kim, Minho;Jung, Ho-Youl;Kim, Dae-Hee;Choi, Jae-Hun;Choi, Wan;Lee, Kyu-Chul
    • ETRI Journal
    • /
    • v.37 no.2
    • /
    • pp.212-221
    • /
    • 2015
  • As the amount of re-sequencing genome data grows, minimizing the execution time of an analysis is required. For this purpose, recent computing systems have been adopting both high-performance coprocessors and host processors. However, there are few applications that efficiently utilize these heterogeneous computing resources. This problem equally refers to the work of single nucleotide polymorphism (SNP) detection, which is one of the bottlenecks in genome data processing. In this paper, we propose a method for speeding up an SNP detection by enhancing the utilization of heterogeneous computing resources often used in recent high-performance computing systems. Through the measurement of workload in the detection procedure, we divide the SNP detection into several task groups suitable for each computing resource. These task groups are scheduled using a window overlapping method. As a result, we improved upon the speedup achieved by previous open source applications by a magnitude of 10.

A LAMP-SNP Assay Detecting C580Y Mutation in Pfkelch13 Gene from Clinically Dried Blood Spot Samples

  • Khammanee, Thunchanok;Sawangjaroen, Nongyao;Buncherd, Hansuk;Tun, Aung Win;Thanapongpichat, Supinya
    • Parasites, Hosts and Diseases
    • /
    • v.59 no.1
    • /
    • pp.15-22
    • /
    • 2021
  • Artemisinin resistance (ART) has been confirmed in Greater Mekong Sub-region countries. Currently, C580Y mutation on Pfkelch13 gene is known as the molecular marker for the detection of ART. Rapid and accurate detection of ART in field study is essential to guide malaria containment and elimination interventions. A simple method for collection of malaria-infected blood is to spot the blood on filter paper and is fast and easy for transportation and storage in the field study. This study aims to evaluate LAMP-SNP assay for C580Y mutation detection by introducing an extra mismatched nucleotide at the 3' end of the FIP primer. The LAMP-SNP assay was performed in a water bath held at a temperature of 56℃ for 45 min. LAMP-SNP products were interpreted by both gel-electrophoresis and HNB-visualized changes in color. The method was then tested with 120 P. falciparum DNA from dried blood spot samples. In comparing the LAMP-SNP assay results with those from DNA sequencing of the clinical samples, the 2 results fully agreed to detect C580Y. The sensitivity and specificity of the LAMP-SNP assay showed 100%. There were no cross-reactions with other Plasmodium species and other Pfkelch13 mutations. The LAMP-SNP assay performed in this study was rapid, reliable, and useful in detecting artemisinin resistance in the field study.

Tetra Primer ARMS PCR Optimization to Detect Single Nucleotide Polymorphisms of the CYP2E1 Gene

  • Suhda, Saihas;Paramita, Dewi Kartikawati;Fachiroh, Jajah
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.7
    • /
    • pp.3065-3069
    • /
    • 2016
  • Single nucleotide polymorphism (SNP) detection has been used extensively for genetic association studies of diseases including cancer. For mass, yet accurate and more economic SNP detection we have optimized tetra primer amplification refractory mutation system polymerase chain reaction (ARMS PCR) to detect three SNPs in the cytochrome P450 2E1 (CYP2E1) gene locus; i.e. rs3813865, rs2070672 and rs3813867. The optimization system strategies used were (1) designing inner and outer primers; (2) determining of their optimum primer concentration ratios; and (3) determining of the optimum PCR annealing temperature. The tetra primer ARMS PCR result could be directly observed using agarose gel electrophoresis. The method succesfully determined three SNPs in CYP2E1 locus, the results being consistent with validation using DNA sequencing and restriction fragment length polymorphisms (RFLP).

Detection of SNPs using electrical biased method on diamond FETs (다이아몬드 FETs에서 전기적 바이어스 방법을 이용한 단일염기 다형성(SNPs) 검출)

  • Song, Kwang Soup
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.3
    • /
    • pp.190-195
    • /
    • 2015
  • The detection of single nucleotide polymorphisms (SNPs) caused of mutant or genetic diseases is important to diagnosis and medicine. There are many methods have been proposed to detect SNPs. However the detection of SNPs is difficulty, because the difference of energy between complementary DNA (cDMA) and SNPs is very small. In this work, we detect the SNPs using field-effect transistors (FETs) which based on the detection of negative charge of DNA. We bias -0.3 V on the drain-source electrode at the target DNA hybridization process. The efficiency of hybridization and the amplitude of signal decrease by repulsive force between negative charge of DNA and negative bias on the electrode. However, the sensitivity of SNPs increases about 5 times from 1.7 mV to 8.7 mV.

Main SNP Identification of Hanwoo Carcass Weight with Multifactor Dimensionality Reduction(MDR) Method (MULTIFACTOR DIMENSIONALITY REDUCTION(MDR)을 이용한 한우 도체중에서의 주요 SNP 규명)

  • Lee, Jea-Young;Kim, Dong-Chul
    • The Korean Journal of Applied Statistics
    • /
    • v.21 no.1
    • /
    • pp.53-63
    • /
    • 2008
  • It is commonly believed that disease of human or economic traits of livestock are caused not by single gene acting alone, but by multiple genes interacting with one an-other. This issue is difficult due to the limitations of parametric statistical method like as logistic regression for detection of gene effects that are dependent solely on interactions with other genes and with environmental exposures. Multifactor dimensionality reduction (MDR) nonparametric statistical method, to improve the identification of single nucleotide polymorphism (SNP) associated with the Hanwoo(Korean cattle) carcass cold weight, is applied and compared with ANOVA results.

SNP (Single Nucleotide Polymorphism) Detection Using Indicator-free DNA (비수식화 DNA를 이용한 SNP의 검출)

  • Choi, Yong-Sung;Park, Dae-Hee;Kwon, Young-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.224-226
    • /
    • 2003
  • In this paper, we succeeded SNP discrimination of DNA hybridization on microarray using new electrochemical system. Using the electrochemical method with a label-free DNA has Performed DNA chip microarray. This method is based on redox of an electrochemical ligand. We developed scanning system with high performance.

  • PDF

SNP Detection of Carboxypeptidase E Gene and Its Association with Meat Quality and Carcass Traits in Korean Cattle

  • Shin, S.C.;Chung, E.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.3
    • /
    • pp.328-333
    • /
    • 2007
  • Carboxypeptidase E (CPE) plays an important role in the regulation of the body fat content. Therefore, it has been suggested as candidate gene for traits related to meat quality in beef cattle. This study was conducted to identify single nucleotide polymorphisms (SNPs) in the CPE gene and to investigate association of SNP marker with carcass and meat quality traits in Korean cattle. Three SNPs were identified in the intron 4 (A309G SNP and C445T SNP) and exon 5 (C601T SNP) of the CPE gene by sequence analyses of CPE cDNA and genomic DNA samples. The sequences have been deposited in GenBank database with accession numbers AY970664 and AY970663. Genotyping of the gene-specific SNP marker was carried out using the PCR-RFLP with restriction enzymes DdeI for C445T SNP and NlaIII for C601T SNP. The frequencies of C and T alleles were 0.43 and 0.57 for C445T SNP and 0.42 and 0.58 for C601T SNP, respectively. Statistical analysis indicated that the C445T SNP showed a significant effect (p<0.05) on marbling score (MS) and breeding value of backfat thickness (BF-EBV), respectively. Animals with the CT genotype showed higher marbling score and backfat thickness than those with the TT genotype. This marker also showed a significant dominance effect for the MS and BF-EBV (p<0.05). However, no significant associations were observed between C601T SNP genotypes and all traits examined. The results suggest that the CPE gene may be used as a marker for carcass traits in Korean cattle.

Detection of 881A→881G Mutation in Tyrosinase Gene and Associations with the Black Ear Coat Color in Rabbits

  • Jiang, Y.L.;Fan, X.Z.;Lu, Z.X.;Tang, H.;Xu, J.-Q.;Du, L.-X.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.10
    • /
    • pp.1395-1397
    • /
    • 2002
  • The tyrosinase gene was selected as a candidate for uncovering genetic mechanism causing 'black ear' coat color in rabbits. A PCR-SSCP detection method was established for the $881^A{\rightarrow}881^G$ mutation located in the central region of the tyrosinase gene between the CuA and CuB binding region signatures, and this was confirmed by sequencing and alignment. Fully consistent associations between the SNP and 'black ear' coat color were observed by analysis in a "black ear" pedigree and on 61 unrelated individuals. This SNP can serve as a molecular marker for use in "back ear" wool rabbit breeding.

Single-base Discrimination Mediated by Proofreading Inert Allele Specific Primers

  • Lin-Ling, Chen;Zhang, Jia;Sommer, Steve S.;Li, Kai
    • BMB Reports
    • /
    • v.38 no.1
    • /
    • pp.24-27
    • /
    • 2005
  • The role of 3' exonuclease excision in DNA polymerization was evaluated for primer extension using inert allele specific primers with exonuclease-digestible ddNMP at their 3' termini. Efficient primer extension was observed in amplicons where the inert allele specific primers and their corresponding templates were mismatched. However, no primer-extended products were yielded by matched amplicons with inert primers. As a control, polymerase without proofreading activity failed to yield primer extended products from inert primers regardless of whether the primers and templates were matched or mismatched. These data indicated that activation was undertaken for the inert allele specific primers through mismatch proofreading. Complementary to our previously developed SNP-operated on/off switch, in which DNA polymerization only occurs in matched amplicon, this new mutation detection assay mediated by $exo^+$ DNA polymerases has immediate applications in SNP analysis independently or in combination of the two assays.

A parallel SNP detection algorithm for RNA-Seq data (RNA 시퀀싱 데이터를 이용한 병렬 SNP 추출 알고리즘)

  • Kim, Deok-Keun;Lee, Deok-Hae;Kong, Jin-Hwa;Lee, Un-Joo;Yoon, Jee-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.04a
    • /
    • pp.1260-1263
    • /
    • 2011
  • 최근 차세대 시퀀싱 (Next Generation Sequencing, NGS) 기술이 발전하면서 DNA, RNA 등의 시퀀싱 데이터를 이용한 유전체 분석 방식에 관한 연구가 활발히 이루어지고 있다. 차세대 시퀀싱 데이터를 이용한 유전체 분석 방식은 마이크로어레이 혹은 EST/cDNA 데이터를 이용한 기존의 분석 방식에 비하여 비용이 적게 들고 정확한 결과를 얻을 수 있다는 장점이 있다. 그러나 이 들 DNA, RNA 시퀀싱 데이터는 각 시퀀스의 길이가 짧고 전체 용량은 매우 커서 이 들 데이터로부터 정확한 분석 결과를 추출하는 데에 많은 어려움이 있다. 본 연구에서는 클라우드 컴퓨팅 기술을 기반으로 하여 대용량의 RNA 시퀀싱 데이터를 고속으로 처리하는 병렬 SNP 추출 알고리즘을 제안한다. 전체 게놈 데이터 중 유전자 영역만을 high coverage로 시퀀싱하여 얻어지는 RNA 시퀀싱 데이터는 유전자 변이 추출을 목적으로 분석되며, SNP(Single Nucleotide Polymorphism)와 같은 유전자 변이는 질병의 원인 규명 및 치료법 개발에 직접 이용된다. 제안된 알고리즘은 동시에 실행되는 다수의 Map/Reduce 함수에 의해서 대규모 RNA 시퀀스를 병렬로 처리하며, 레퍼런스 시퀀스에 매핑된 각 염기의 출현 빈도와 품질점수를 이용하여 SNP를 추출한다. 또한 이 들 SNP 추출 결과에 대한 시각적 분석 도구를 제공하여 SNP 추출 과정 및 근거를 시각적으로 확인/검증할 수 있도록 지원한다.