• Title/Summary/Keyword: SNP (single nucleotide polymorphisms)

Search Result 458, Processing Time 0.034 seconds

Investigation of Single Nucleotide Polymorphisms in the Adipocyte Fatty-Acid Binding Protein (FABP4) Gene (FABP4 유전자의 단일염기 다형성에 관한 연구)

  • Kim, Sang-Wook;Jung, Ji-Hye;Kim, Kwan-Suk;Lee, Cheol-Koo;Kim, Jong-Joo;Choi, Bong-Hwan;Kim, Tae-Hun;Song, Ki-Duk;Cho, Byung-Wook
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1505-1510
    • /
    • 2007
  • We found 8 single nucleotide polymorphisms (SNPs) in adipocyte fatty acid bonding protein (FABP4) gene as candidate gene of FAT1 locus on pig chromosome 4. With over 800 heads of major commercial pig breeds including Duroc, Landrace, Berkshire and Yorkshire, we analyzed SNPs of FABP4 gene to determine possible effects of FABP4 genotype to economically important traits. $400{\sim}800\;bp$ amplicons in FABP4 gene were used PCR-RFLP for each SNPs and we found that the frequency of some SNPs of this gene was different among the breeds. According to the statistical analyses to determine possible associations of each genotype with economic traits, it was found that subgroup with different genotypes showed significant differences in daily gain, backfat thickness, lean percentage and feed conversion ratio (P<0.05). Thus, as a Part of enhancing the selection competence related to swine growth rate and lean percentage, it is expected that FABP4 gene markers verified in this study will be useful to use for Korean commercial pig industry.

Association of Single Nucleotide Polymorphisms in Interleukin-12 Receptor (IL-12Rβ1 and IL-12Rβ2) with Asthma in a Korean Population

  • Jung, Jaemee;Park, Sangjung;Kim, Sung-Soo;Hong, Mijin;Choi, Eunhye;Jin, Hyun-Seok;Hwang, Dahyun
    • Biomedical Science Letters
    • /
    • v.26 no.4
    • /
    • pp.344-350
    • /
    • 2020
  • Asthma is a chronic disease and occurs in airway in the lung. The cause of the disease has not been identified, it is assumed that both genetic and environmental risk factors play an important role in the development of asthma. Interleukin (IL)-12 is a cytokine regulating T-cell and NK cell. In this study, we analyzed the genetic polymorphisms of IL-12 receptor genes (IL-12Rβ1 and IL-12Rβ2) in asthma patients and normal individuals in a Korean population. We analyzed single nucleotide polymorphisms (SNPs) in IL-12Rβ1 and IL-12Rβ2 using the genotype data of 193 asthma cases and 3,228 healthy controls from the Korea Association REsource for their correlation with asthma case. IL-12Rβ1 and IL-12Rβ2 genes showed statistically significant polymorphism association with asthma case. As a results, 16 SNPs from IL-12Rβ1 and IL-12Rβ2 genes showed statistically significant association with asthma. Among them, rs375947 SNP in IL-12Rβ1 showed the greatest statistical correlation with asthma (P-value = 0.028, Odds Ratio = 1.27, 95% Confidence Interval = 1.03~1.57). The groups with minor allele of IL-12Rβ1 and IL-12Rβ2 showed increased risk of asthma. The genotype-based mRNA expression analysis showed that the group of minor allele of IL-12Rβ1 showed decreased mRNA expression. Decreased IL-12Rβ1 expression causes decreased IL-12 signaling, and this affects developing asthma. In conclusion, the SNPs in IL-12Rβ1 and IL-12Rβ2 may contribute to development of asthma in a Korean population.

Screening of the Single Nucleotide Polymorphisms in the Protamine 1 and 2 Genes of Korean Infertile Men (한국 남성 불임환자에서 Protamine 1과 2 유전자의 Single Nucleotide Polymorphism에 관한 연구)

  • Lee, Hyoung-Song;Choi, Hye Won;Park, Yong-Seog;Seo, Ju Tae;Koong, Mi Kyoung;Jun, Jin Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.32 no.3
    • /
    • pp.279-286
    • /
    • 2005
  • Objective: Although several genetic factors have been associated with defects in human spermatogenesis, the unambiguous causative genes have not been elucidated. The male infertility by haploinsufficiency of PRM1 or PRM2 has been reported in mouse model. The aim of this study was to identify the single nucleotide polymorphisms (SNPs) of PRM1 and PRM2, related to the genotype of Korean infertile men. Methods: Genomic DNAs were extracted from peripheral bloods of infertile men with oligozoospermia or azoospermia, and analyzed using polymerase chain reaction (PCR) and direct sequencing. We carried out the direct sequencing analysis of amplified fragments in PRM1 (557 nucleotides from -42 to 515) and PRM2 (599 nucleotides from 49 to 648) genes, respectively. Results: Three SNPs of coding region in the PRM1 gene was found in the analysis of 130 infertile men. However, the SNPs at a133g (aa 96.9%, ag 3.1% and gg 0.0%), c160a (cc 99.2%, ca 0.8% and aa 0.0%) and c321a (cc 56.9%, ca 35.4% and aa 7.7%) coded the same amino acids, in terms of silence phenotypes. On the other hand, as results of the PRM2 gene sequencing in 164 infertile men, only two SNPs, g398c (gg 62.2%, gc 31.1% and ga 6.7%) and a473c (aa 63.4%, ac 29.9% and cc 6.7%), were identified in the intron of the PRM2 gene. Conclusions: There was no mutation and significant SNPs on PRM1 and PRM2 gene in Korean infertile men. These results suggest that the PRM1 and PRM2 genes are highly conserved and essential for normal fertility of men.

Performance Comparison of Two Gene Set Analysis Methods for Genome-wide Association Study Results: GSA-SNP vs i-GSEA4GWAS

  • Kwon, Ji-Sun;Kim, Ji-Hye;Nam, Doug-U;Kim, Sang-Soo
    • Genomics & Informatics
    • /
    • v.10 no.2
    • /
    • pp.123-127
    • /
    • 2012
  • Gene set analysis (GSA) is useful in interpreting a genome-wide association study (GWAS) result in terms of biological mechanism. We compared the performance of two different GSA implementations that accept GWAS p-values of single nucleotide polymorphisms (SNPs) or gene-by-gene summaries thereof, GSA-SNP and i-GSEA4GWAS, under the same settings of inputs and parameters. GSA runs were made with two sets of p-values from a Korean type 2 diabetes mellitus GWAS study: 259,188 and 1,152,947 SNPs of the original and imputed genotype datasets, respectively. When Gene Ontology terms were used as gene sets, i-GSEA4GWAS produced 283 and 1,070 hits for the unimputed and imputed datasets, respectively. On the other hand, GSA-SNP reported 94 and 38 hits, respectively, for both datasets. Similar, but to a lesser degree, trends were observed with Kyoto Encyclopedia of Genes and Genomes (KEGG) gene sets as well. The huge number of hits by i-GSEA4GWAS for the imputed dataset was probably an artifact due to the scaling step in the algorithm. The decrease in hits by GSA-SNP for the imputed dataset may be due to the fact that it relies on Z-statistics, which is sensitive to variations in the background level of associations. Judicious evaluation of the GSA outcomes, perhaps based on multiple programs, is recommended.

Demographic Trends in Korean Native Cattle Explained Using Bovine SNP50 Beadchip

  • Sharma, Aditi;Lim, Dajeong;Chai, Han-Ha;Choi, Bong-Hwan;Cho, Yongmin
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.230-233
    • /
    • 2016
  • Linkage disequilibrium (LD) is the non-random association between the loci and it could give us a preliminary insight into the genetic history of the population. In the present study LD patterns and effective population size (Ne) of three Korean cattle breeds along with Chinese, Japanese and Mongolian cattle were compared using the bovine Illumina SNP50 panel. The effective population size (Ne) is the number of breeding individuals in a population and is particularly important as it determines the rate at which genetic variation is lost. The genotype data in our study comprised a total of 129 samples, varying from 4 to 39 samples. After quality control there were ~29,000 single nucleotide polymorphisms (SNPs) for which $r^2$ value was calculated. Average distance between SNP pairs was 1.14 Mb across all breeds. Average $r^2$ between adjacent SNP pairs ranged between was 0.1 for Yanbian to 0.3 for Qinchuan. Effective population size of the breeds based on $r^2$ varied from 16 in Hainan to 226 in Yanbian. Amongst the Korean native breeds effective population size of Brindle Hanwoo was the least with Ne = 59 and Brown Hanwoo was the highest with Ne = 83. The effective population size of the Korean cattle breeds has been decreasing alarmingly over the past generations. We suggest appropriate measures to be taken to prevent these local breeds in their native tracts.

The Korean HapMap Project Website

  • Kim, Young-Uk;Kim, Seung-Ho;Jin, Hoon;Park, Young-Kyu;Ji, Mi-Hyun;Kim, Young-Joo
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.91-94
    • /
    • 2008
  • Single nucleotide polymorphisms (SNPs) are the most abundant form of human genetic variation and are a resource for mapping complex genetic traits. A genome is covered by millions of these markers, and researchers are able to compare which SNPs predominate in people who have a certain disease. The International HapMap Project, launched in October, 2002, motivated us to start the Korean HapMap Project in order to support Korean HapMap infrastructure development and to accelerate the finding of genes that affect health, disease, and individual responses to medications and environmental factors. A Korean SNP and haplotype database system was developed through the Korean HapMap Project to provide Korean researchers with useful data-mining information about disease-associated biomarkers for studies on complex diseases, such as diabetes, cancer, and stroke. Also, we have developed a series of software programs for association studies as well as the comparison and analysis of Korean HapMap data with other populations, such as European, Chinese, Japanese, and African populations. The developed software includes HapMapSNPAnalyzer, SNPflank, HWE Test, FESD, D2GSNP, SNP@Domain, KMSD, KFOD, KFRG, and SNP@WEB. We developed a disease-related SNP retrieval system, in which OMIM, GeneCards, and MeSH information were integrated and analyzed for medical research scientists. The kHapMap Browser system that we developed and integrated provides haplotype retrieval and comparative study tools of human ethnicities for comprehensive disease association studies (http://www.khapmap.org). It is expected that researchers may be able to retrieve useful information from the kHapMap Browser to find useful biomarkers and genes in complex disease association studies and use these biomarkers and genes to study and develop new drugs for personalized medicine.

Comparison of SNP Variation and Distribution in Indigenous Ethiopian and Korean Cattle (Hanwoo) Populations

  • Edea, Zewdu;Dadi, Hailu;Kim, Sang-Wook;Dessie, Tadelle;Kim, Kwan-Suk
    • Genomics & Informatics
    • /
    • v.10 no.3
    • /
    • pp.200-205
    • /
    • 2012
  • Although a large number of single nucleotide polymorphisms (SNPs) have been identified from the bovine genome-sequencing project, few of these have been validated at large in Bos indicus breeds. We have genotyped 192 animals, representing 5 cattle populations of Ethiopia, with the Illumina Bovine 8K SNP BeadChip. These include 1 Sanga (Danakil), 3 zebu (Borana, Arsi and Ambo), and 1 zebu ${\times}$ Sanga intermediate (Horro) breeds. The Hanwoo (Bos taurus) was included for comparison purposes. Analysis of 7,045 SNP markers revealed that the mean minor allele frequency (MAF) was 0.23, 0.22, 0.21, 0.21, 0.23, and 0.29 for Ambo, Arsi, Borana, Danakil, Horro, and Hanwoo, respectively. Significant differences of MAF were observed between the indigenous Ethiopian cattle populations and Hanwoo breed (p < 0.001). Across the Ethiopian cattle populations, a common variant MAF (${\geq}0.10$ and ${\leq}0.5$) accounted for an overall estimated 73.79% of the 7,045 SNPs. The Hanwoo displayed a higher proportion of common variant SNPs (90%). Investigation within Ethiopian cattle populations showed that on average, 16.64% of the markers were monomorphic, but in the Hanwoo breed, only 6% of the markers were monomorphic. Across the sampled Ethiopian cattle populations, the mean observed and expected heterozygosities were 0.314 and 0.313, respectively. The level of SNP variation identified in this particular study highlights that these markers can be potentially used for genetic studies in African cattle breeds.

Identification of 1,531 cSNPs from Full-length Enriched cDNA Libraries of the Korean Native Pig Using in Silico Analysis

  • Oh, Youn-Shin;Nguyen, Dinh Truong;Park, Kwang-Ha;Dirisala, Vijaya R.;Choi, Ho-Jun;Park, Chan-Kyu
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.65-84
    • /
    • 2009
  • Sequences from the clones of full-length enriched cDNA libraries serve as valuable resources for functional genomics related studies, genome annotation and SNP discovery. We analyzed 7,392 high-quality chromatograms (Phred value ${\geq}$30) obtained from sequencing the 5' ends of clones derived from full-length enriched cDNA libraries of Korean native pigs including brainstem, liver, cerebellum, neocortex and spleen libraries. In addition, 50,000 EST sequence trace files obtained from GenBank were combined with our sequences to identify cSNPs in silico. The process generated 11,324 contigs, of which 2,895 contigs contained at least one SNP and among them 610 contigs had a minimum of one sequence from Korean native pigs. Of 610 contigs, we randomly selected 262 contigs and performed in silico analysis for the identification of cSNPs. From the results, we identified 1,531 putative coding single nucleotide polymorphisms (cSNPs) and the SNP detection frequency was one SNP per 465 bp. A large-scale sequencing result of clones from full-length enriched cDNA libraries and identified cSNPs will serve as a useful resource to functional genomics related projects such as a pig HapMap project in the near future.

Study Gene Interaction Effect Based on Expanded Multifactor Dimensionality Reduction Algorithm (확장된 다중인자 차원축소 (E-MDR) 알고리즘에 기반한 유전자 상호작용 효과 규명)

  • Lee, Jea-Young;Lee, Ho-Guen;Lee, Yong-Won
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.6
    • /
    • pp.1239-1247
    • /
    • 2009
  • Study the gene about economical characteristic of human disease or domestic animal is a matter of grave interest, preserve and elevation of gene of Korea cattle is key subject. Studies have been done on the gene of Korea cattle using EST based SNP map, but it is based on statistical model, therefore there are difference between real position and statistical position. These problems are solved using both EST_based SNP map and Gene on sequence by Lee et al. (2009b). We have used multifactor dimensionality reduction(MDR) method to study interaction effect of statistical model in general. But MDR method cannot be applied in all cases. It can be applied to the only case-control data. So, method is suggested E-MDR method using CART algorithm. Also we identified interaction effects of single nucleotide polymorphisms(SNPs) responsible for average daily gain(ADG) and marbling score(MS) using E-MDR method.

Imputation Accuracy from 770K SNP Chips to Next Generation Sequencing Data in a Hanwoo (Korean Native Cattle) Population using Minimac3 and Beagle (Minimac3와 Beagle 프로그램을 이용한 한우 770K chip 데이터에서 차세대 염기서열분석 데이터로의 결측치 대치의 정확도 분석)

  • An, Na-Rae;Son, Ju-Hwan;Park, Jong-Eun;Chai, Han-Ha;Jang, Gul-Won;Lim, Dajeong
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1255-1261
    • /
    • 2018
  • Whole genome analysis have been made possible with the development of DNA sequencing technologies and discovery of many single nucleotide polymorphisms (SNPs). Large number of SNP can be analyzed with SNP chips, since SNPs of human as well as livestock genomes are available. Among the various missing nucleotide imputation programs, Minimac3 software is suggested to be highly accurate, with a simplified workflow and relatively fast. In the present study, we used Minimac3 program to perform genomic missing value substitution 1,226 animals 770K SNP chip and imputing missing SNPs with next generation sequencing data from 311 animals. The accuracy on each chromosome was about 94~96%, and individual sample accuracy was about 92~98%. After imputation of the genotypes, SNPs with R Square ($R^2$) values for three conditions were 0.4, 0.6, and 0.8 and the percentage of SNPs were 91%, 84%, and 70% respectively. The differences in the Minor Allele Frequency gave $R^2$ values corresponding to seven intervals (0, 0.025), (0.025, 0.05), (0.05, 0.1), (0.1, 0.2), (0.2, 0.3). (0.3, 0.4) and (0.4, 0.5) of 64~88%. The total analysis time was about 12 hr. In future SNP chip studies, as the size and complexity of the genomic datasets increase, we expect that genomic imputation using Minimac3 can improve the reliability of chip data for Hanwoo discrimination.