KSII Transactions on Internet and Information Systems (TIIS)
/
v.15
no.10
/
pp.3571-3587
/
2021
For accurately analysing and forecasting the social networks of China's political, economic and social power elites, it is necessary to develop a database that collates their information. The development of such a database involves three stages: data definition, data collection and data quality maintenance. The present study recommends distinctive solutions in overcoming the challenges that occur in existing comparable databases. We used organizational and event factors to identify the Chinese power elites to be included in the database, and used their memberships, social relations and interactions in combination with flows data collection methodologies to determine the associations between them. The system can be used to determine the optimal relationship path (i.e., the shortest path) to reach a target elite and to identify of the most important power elite in a social network (e.g., degree, closeness and eigenvector centrality) or a community (e.g., a clique or a cluster). We have used three social network analysis tools (i.e., R, UCINET and NetMiner) in order to find the important nodes in the network. We compared the results of centrality rankings of each tool. We found that all three tools are providing slightly different results of centrality. This is because different tools use different algorithms and even within the same tool there are various libraries which provide the same functionality (i.e., ggraph, igraph and sna in R that provide the different function to calculate centrality). As there are chances that the results may not be the same (i.e. centrality rankings indicating the most important nodes can be varied), we recommend a comparison test using different tools to get accurate results.
Journal of the Architectural Institute of Korea Structure & Construction
/
v.34
no.5
/
pp.35-42
/
2018
In order to seek out methods to reduce safety accidents caused by construction machinery and equipment, this study collects data about safety accidents and draws main risk factors by construction from the data, through SNA. It aimed to suggest safety management points to be used in future construction fields, by analyzing risk index of such factors. The finding can be summarized: First, Backhoe Bucket is the risk factor for crash accidents of average workers in earth works; boring machines-maintenance is the risk factor for fall accidents of construction machinery operators in foundation works; bending machine-reinforcing rod processing is the risk factor for jamming accidents of reinforcing rod engineers in frame works; and mobile crane-hook is the risk factor for crash accidents of average workers in lifting works. Second, works can be arranged in turn, according to the risk index: earth, lifting, frame and foundation works. Risk factors can be also arranged according to the risk index: Backhoe in earth works, pile drivers in foundation works, bending machines in frame works and mobile cranes in lifting works. This study has some limits, in that it only analyzed main machinery/equipment, among various kinds of them, for earth, foundation, frame and temporary works (lifting works) and used data collected over three years. Therefore, it is necessary to conduct an analysis using big data, by collecting additional data about a lot of machinery/equipment in future construction fields.
Among the techniques for recommendation, collaborative filtering (CF) is commonly recognized to be the most effective for implementing recommender systems. Until now, CF has been popularly studied and adopted in both academic and real-world applications. The basic idea of CF is to create recommendation results by finding correlations between users of a recommendation system. CF system compares users based on how similar they are, and recommend products to users by using other like-minded people's results of evaluation for each product. Thus, it is very important to compute evaluation similarities among users in CF because the recommendation quality depends on it. Typical CF uses user's explicit numeric ratings of items (i.e. quantitative information) when computing the similarities among users in CF. In other words, user's numeric ratings have been a sole source of user preference information in traditional CF. However, user ratings are unable to fully reflect user's actual preferences from time to time. According to several studies, users may more actively accommodate recommendation of reliable others when purchasing goods. Thus, trust relationship can be regarded as the informative source for identifying user's preference with accuracy. Under this background, we propose a new hybrid recommender system that fuses CF and social network analysis (SNA). The proposed system adopts the recommendation algorithm that additionally reflect the result analyzed by SNA. In detail, our proposed system is based on conventional memory-based CF, but it is designed to use both user's numeric ratings and trust relationship information between users when calculating user similarities. For this, our system creates and uses not only user-item rating matrix, but also user-to-user trust network. As the methods for calculating user similarity between users, we proposed two alternatives - one is algorithm calculating the degree of similarity between users by utilizing in-degree and out-degree centrality, which are the indices representing the central location in the social network. We named these approaches as 'Trust CF - All' and 'Trust CF - Conditional'. The other alternative is the algorithm reflecting a neighbor's score higher when a target user trusts the neighbor directly or indirectly. The direct or indirect trust relationship can be identified by searching trust network of users. In this study, we call this approach 'Trust CF - Search'. To validate the applicability of the proposed system, we used experimental data provided by LibRec that crawled from the entire FilmTrust website. It consists of ratings of movies and trust relationship network indicating who to trust between users. The experimental system was implemented using Microsoft Visual Basic for Applications (VBA) and UCINET 6. To examine the effectiveness of the proposed system, we compared the performance of our proposed method with one of conventional CF system. The performances of recommender system were evaluated by using average MAE (mean absolute error). The analysis results confirmed that in case of applying without conditions the in-degree centrality index of trusted network of users(i.e. Trust CF - All), the accuracy (MAE = 0.565134) was lower than conventional CF (MAE = 0.564966). And, in case of applying the in-degree centrality index only to the users with the out-degree centrality above a certain threshold value(i.e. Trust CF - Conditional), the proposed system improved the accuracy a little (MAE = 0.564909) compared to traditional CF. However, the algorithm searching based on the trusted network of users (i.e. Trust CF - Search) was found to show the best performance (MAE = 0.564846). And the result from paired samples t-test presented that Trust CF - Search outperformed conventional CF with 10% statistical significance level. Our study sheds a light on the application of user's trust relationship network information for facilitating electronic commerce by recommending proper items to users.
Journal of Korean Home Economics Education Association
/
v.36
no.2
/
pp.65-88
/
2024
This study aims to explore the knowledge structure of the field of home economics education. To achieve this, the knowledge network of the field of home economics education was analyzed using social network analysis on 758 articles published between 2004 and 2023, focusing on those in the Journal of Home Economics Education Research. The main findings of the study are as follows: First, the knowledge network exhibited characteristics of a small-world network. Papers on children, family, and career maturity significantly influenced the knowledge structure. Second, the knowledge structure is centered around the home economics subject and curriculum and is organized into four groups. A temporal analysis revealed that the influence of core keywords such as perception, content, unit, home economics teachers, practice, behavior, and influence has decreased, while the influence of curriculum, textbook, and development has shown a trend of increasing. Third, the sub-knowledge structures were identified as seven categories. The study found that the influence of 'perception and demand for home economics education' is decreasing, whereas the influence of 'home economics curriculum and textbooks' and 'application of home economics teaching and learning process' is increasing. Additionally, 'adolescent self-esteem and family relationships' and 'home economics curriculum and textbooks' were found to be the most influential in the knowledge structure of home economics education. This research is significant as it demonstrates the temporal changes in the core keywords and sub-structures of the knowledge structure within the field, thereby providing a foundation for understanding and expanding the research knowledge structure in the field of home economics education.
This study aims to conduct a comprehensive meta-study from the perspective of content analysis to explore trends in Korean academic research on the sharing economy by using the big data analytics. Comprehensive meta-analysis methodology can examine the entire set of research results historically and wholly to illuminate the tendency or properties of the overall research trend. Academic research related to the sharing economy first appeared in the year in which Professor Lawrence Lessig introduced the concept of the sharing economy to the world in 2008, but research began in earnest in 2013. In particular, between 2006 and 2008, research improved dramatically. In order to grasp the overall flow of domestic academic research of trends, 8 years of papers from 2013 to the present have been selected as target analysis papers, focusing on titles, keywords, and abstracts using database of electronic journals. Big data analysis was performed in the order of cleaning, analysis, and visualization of the collected data to derive research trends and insights by year and type of literature. We used Python3.7 and Textom analysis tools for data preprocessing, text mining, and metrics frequency analysis for key word extraction, and N-gram chart, centrality and social network analysis and CONCOR clustering visualization based on UCINET6/NetDraw, Textom program, the keywords clustered into 8 groups were used to derive the typologies of each research trend. The outcomes of this study will provide useful theoretical insights and guideline to future studies.
Journal of the Korean Association of Geographic Information Studies
/
v.21
no.3
/
pp.176-188
/
2018
Modern urban problems are increasingly becoming a market mix that can not be solved by the power of a single department and the necessity of establishing a cooperation system based on data communication between departments is increasing. Therefore, this study analyzed Busan metropolitan city's IT projects from 2014 to 2018 in order to understand the utilization and sharing status of departmental data from the viewpoint that cooperation between departments can start from the sharing of data with high common utilization. In addition, based on the results of the FGI(Focus Group Interview) conducted for the officials of the department responsible for the informatization project, we verified the results of data status analysis. At the same time, we figured out the necessity of data link between departments through SNA(Social Network Analysis) and presented data that should be shared first in the future. As a result, most of the information systems currently use limited data only within the department that produced the data. Most of the linked data was concentrated in the information department. Therefore, this study suggested the following solutions. First, in order to prevent overlapping investments caused by the operation of individual departments and share information, it is necessary to build a small platform to tie the departments, which have high connectivity with each other, into small blocks. Second, a local level process is needed to develop data standards as an extension of national standards in order to expand the information to be used in various fields. Third, as another solution, we proposed a system that can integrate various types of information based on address and location information through application of cloud-based GIS platform. The results of this study are expected to contribute to build a cooperation system between departments through expansion of information sharing with cost reduction.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.5
/
pp.308-314
/
2022
This study deals with the technology Convergence Analysis by IPC Code-Based Social Network Analysis of Healthcare Patents filed in Korea. The relationship between core technologies is visualized using Social Network Analysis. At the subclass level of healthcare patents, 1,155 cases (49.4%) of patents with complex IPC codes were investigated, and as a result of Social Network Analysis on them, the IPC codes with the highest Degree Centrality were A61B, G16H, and G06Q, in that order. The IPC codes with the highest Betweenness Centrality are in the order of A61B, G16H, and G06Q. In addition, it was confirmed that healthcare patents consist of two large technology clusters. Cluster-1 corresponds to related business models centered on A61B, G16H and G06Q, and Cluster-2 is consisting of H04L, H04W and H04B. The technology convergence core pairs of the healthcare patent is [G16H-A61B] and [G16H-G06Q] in Cluster-1, and [H04L-H04W] in Cluster-2. The results of this study can contribute to the development of core technologies for healthcare patents.
In this research, sea routes of domestic coaster liners between 2005 and 2013 were studied via social network analysis. Study of the sea routes revealed that they follow power-law in a scale-free form, a characteristic found often in social network. We have looked into centrality, which is a major standard in the field of social network analysis. We have also analyzed the annual changing trend in the centrality of the connectivity, examined the effect of quantity through the comparison with the original quantitative analysis method, and lastly, verified the relationship between the centrality of connectivity and mediation. Then, we were able to identify ports according to priority using these factors. This research assumed and interpreted the coaster liners route as a single network and suggested useful results. Based on these results, directing of development of domestic coaster liners route development and other factors will be achieved more smoothly. And if we utilize social network analysis method in other various fields - for example, the centrality of airport and the diplomatic realations analysis of the neighboring country - we will be able to effectively analyze events in diverse perspectives.
Asia-Pacific Journal of Business Venturing and Entrepreneurship
/
v.17
no.2
/
pp.81-97
/
2022
This paper's purpose is to get hold of the recent research trend by analyzing the variables uesd in startups related papers. The startups related papers in this paper are the papers which include 'startups' in the title of the registered papers from the year 2013 to the year 2020. This study's analysis methods are text-mining of all variables and text-network analysis of affected variables. Visualizing tool for network analysis is Gephi. The result of variables' analysis is as follows. First, independent variables consist mainly of variables about startups' internal factors and outside environment, but due to startups' features like early stage company's features, innovative features, most of variables are about enterprise internal competitiveness, marketing 4P strategy, entrepreneurship, coopreation method, transformational leadership, enterprise features, lean startup strategy, enterprise internal communication, value orientation, task conflict, relationship conflict, knowledge sharing, etc. Second, dependent variables are mainly about outcome, and are classified into financial performance and non-financial performance by overall concept. In other words, startups related papers have higher interest in non-financial performance, like management performance, team performance, SCM performance as well as financial performance like sales quantity owing to startups' immaturity in getting good financial performance. Through this study we can find out as follows. Although there are not many officially registered papers dealing with startups, those papers include various themes about stratups. For example, there are trendy themes like lean startups strategy, crowdfunding, influencer and accelerator, etc.
Journal of the Korea Institute of Information Security & Cryptology
/
v.22
no.4
/
pp.851-868
/
2012
After the financial crisis in 2008, the financial market still seems to be unstable with expanding the insolvency of the financial companies' real estate project financing loan in the aftermath of the lasted real estate recession. Especially after the illegal actions of people's financial institutions disclosed, while increased the anxiety of economic subjects about financial markets and weighted in the confusion of financial markets, the potential risk for the overall national economy is increasing. Thus as economic recession prolongs, the people's financial institutions having a weak profit structure and financing ability commit illegal acts in a variety of ways in order to conceal insolvent assets. Especially it is hard to find the loans of shareholder and the same borrower sharing credit risk in advance because most of them usually use a third-party's name bank account. Therefore, in order to effectively detect the fraud under other's name, it is necessary to analyze by clustering the borrowers high-related to a particular borrower through an analysis of association between the whole borrowers. In this paper, we introduce Analysis Techniques for detecting financial loan frauds in advance through an analysis of association between the whole borrowers by extending SNA(social network analysis) which is being studied by focused on sociology recently to the forensic accounting field of the financial frauds. Also this technique introduced in this pager will be very useful to regulatory authorities or law enforcement agencies at the field inspection or investigation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.