• Title/Summary/Keyword: SMR (single mixed refrigerant) process

Search Result 5, Processing Time 0.026 seconds

Case Studies for SMR Natural Gas Liquefaction Plant by Capacity in Small Scale Gas Wells through Cost Analysis (소규모 가스전 규모에 따른 SMR 천연가스 액화 플랜트 용량별 비용 분석 사례연구)

  • Lee, Inkyu;Cho, Seungsik;Lee, Seungjun;Moon, Il
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.3
    • /
    • pp.46-51
    • /
    • 2016
  • Natural gas liquefaction process which spends a huge amount energy is operated under cryogenic conditions. Thus, many researchers have studied on minimizing energy consumption of LNG plant. However, a few studied for cost optimization have performed. This study focused on the cost analysis for the single mixed refrigerant (SMR) process, one of the simplest natural gas liquefaction process, which has different capacity. The process capacity is increased from 1 million ton per annum (MTPA) to 2.5 MTPA by 0.5 MTPA steps. According to the increase of plant size, only flow rate of natural gas and mixed refrigerant are increased and other operating conditions are fixed. Aspen Economic Evaluator(v.8.7) is used for the cost analysis and six tenths factor rule is applied to obtain multi stream heat exchanger cost data which is not supplied by Aspen Economic Evaluator. Moreover, the optimal plant sizes for different sizes of gas wells are found as the result of applying plant cost to small scale gas wells, 20 million ton (MT), 40 MT, and 80 MT. Through this cost analysis, the foundation is built to optimize LNG plant in terms of the cost.

Potential Explosion Risk Comparison between SMR and DMR Liquefaction Processes at Conceptual Design Stage of FLNG (FLNG개념설계 단계에서 SMR 및 DMR 액화공정의 잠재적 폭발위험도 비교)

  • You, Wonwo;Chae, Minho;Park, Jaeuk;Lim, Youngsub
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.95-105
    • /
    • 2018
  • An FLNG (floating liquefied natural gas) or LNG FPSO (floating production, storage and offloading) unit is a notable offshore unit with the increasing demand for LNG. The liquefaction process on an FLNG unit is the most important process because it determines the economic feasibility, but would be a hazard source because of the large quantity of hydrocarbons. While a high efficiency process such as C3MR has been preferred for onshore liquefaction processes, a relatively simple process such as the SMR (single mixed refrigerant) or DMR (dual mixed refrigerant) liquefaction process has been selected for offshore units because they require a more compact size, lighter weight, and higher safety due to their space limitation for facilities and long distance from shore. It is known that an SMR has the advantages of a simple configuration, small footprint, and lower risk. However, with an increased production rate, the inherent safety of SMR needs to be evaluated because of its small train capacity. In this study, the potential explosion risks of the SMR and DMR liquefaction processes were evaluated at the conceptual design stage. The results showed that an SMR has a lower overpressure than a DMR at the same frequency, only with a small production capacity of 0.9 MTPA. With increased capacity, the overpressure of the SMR was higher than that of the DMR. The increased number of trains increased the frequency in spite of the small amount of equipment per train. This showed that the inherent risk of an SMR is not always lower than that of a DMR, and an additional risk management strategy is recommended when an SMR is selected as the concept for an FLNG liquefaction process compared to the DMR liquefaction process.

A Study on the Superstructure Optimization of LNG Liquefaction Process (LNG 액화공정 초구조 모델 최적화 연구)

  • Son, Heechang;Lim, Youngsub
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2020
  • Because the expenditure of LNG liquefaction processes are high in a LNG project, it is very important to find a suitable liquefaction process model and optimal operating conditions for a project. Various configurations of LNG liquefaction processes have been suggested, and therefore it takes a lot of time and manpower to compare all of these models in order to select an appropriate liquefaction process for a project. A superstructure model can include multiple options in one model and can contribute to decide the best configuration and operating conditions at the same time. This study developed a superstructure model including multiple process options for SMR (Single Mixed Refrigerant) liquefaction process and optimized it. The results showed that the optimization results of the superstructure model have similar values with optimization results of the separate SMR model.

Determination of the Optimal Operating Condition of Dual Mixed Refrigerant Cycle of LNG FPSO Topside Liquefaction Process (LNG FPSO Topside의 액화 공정에 대한 이중 혼합 냉매 사이클의 최적 운전 조건 결정)

  • Lee, Joon-Chae;Cha, Ju-Hwan;Roh, Myung-Il;Hwang, Ji-Hyun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.33-44
    • /
    • 2012
  • In this study, the optimal operating conditions for the dual mixed refrigerant(DMR) cycle were determined by considering the power efficiency. The DMR cycle consists of compressors, heat exchangers, seawater coolers, valves, phase separators, tees, and common headers, and the operating conditions include the equipment's flow rate, pressure, temperature, and refrigerant composition per flow. First, a mathematical model of the DMR cycle was formulated in this study by referring to the results of a past study that formulated a mathematical model of the single mixed refrigerant(SMR) cycle, which consists of compressors, heat exchangers, seawater coolers, and valves, and by considering as well the tees, phase separators, and common headers. Finally, in this study, the optimal operating conditions from the formulated mathematical model was obtained using a hybrid optimization method that consists of the genetic algorithm(GA) and sequential quadratic programming(SQP). Moreover, the required power at the obtained conditions was decreased by 1.4% compared with the corresponding value from the past relevant study of Venkatarathnam.

Investigation on Efficiency Improvement of the Nitrogen Expander Cycle : Natural Gas Liquefaction Process for LNG-FPSO (LNG-FPSO(Liquefied Natural Gas-Floating Production Storage and Offloading)용 질소 팽창 사이클의 효율 개선에 대한 연구)

  • Baek, Seung-Whan;Jeong, Sang-Kwon;Kim, Sun-Young
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.442-447
    • /
    • 2010
  • FPSO (Floating Production Strorage and Offloading) method for LNG industry is efficient and facile compared to onshore NG (Natural Gas) treatment facility. Five simple natural gas liquefaction cycles for FPSO are presented and simulated in this paper. SMR (Single Mixed Refrigerant) cycle, SNE (Single Nitrogen Expander) cycle, DNE (Double Nitrogen Expander) cycle, PNE (Precooled Nitrogen Expander) cycle, and PDNE (Precooled Double Nitrogen Expander) cycle are compared. Simple analysis results in this paper show that precooling process and adding an expander in the liquefaction cycle is an effective way to increase liquefaction efficiency.