• Title/Summary/Keyword: SMOTE

Search Result 70, Processing Time 0.022 seconds

SMOTE by Mahalanobis distance using MCD in imbalanced data (불균형 자료에서 MCD를 활용한 마할라노비스 거리에 의한 SMOTE)

  • Jieun Jung;Yong-Seok Choi
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.455 -465
    • /
    • 2024
  • SMOTE (synthetic minority over-sampling technique) has been used the most as a solution to the problem of imbalanced data. SMOTE selects the nearest neighbor based on Euclidean distance. However, Euclidean distance has the disadvantage of not considering the correlation between variables. In particular, the Mahalanobis distance has the advantage of considering the covariance of variables. But if there are outliers, they usually influence calculating the Mahalanobis distance. To solve this problem, we use the Mahalanobis distance by estimating the covariance matrix using MCD (minimum covariance determinant). Then apply Mahalanobis distance based on MCD to SMOTE to create new data. Therefore, we showed that in most cases this method provided high performance indicators for classifying imbalanced data.

Resolving data imbalance through differentiated anomaly data processing based on verification data (검증데이터 기반의 차별화된 이상데이터 처리를 통한 데이터 불균형 해소 방법)

  • Hwang, Chulhyun
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.179-190
    • /
    • 2022
  • Data imbalance refers to a phenomenon in which the number of data in one category is too large or too small compared to another category. Due to this, it has been raised as a major factor that deteriorates performance in machine learning that utilizes classification algorithms. In order to solve the data imbalance problem, various ovrsampling methods for amplifying prime number distribution data have been proposed. Among them, SMOTE is the most representative method. In order to maximize the amplification effect of minority distribution data, various methods have emerged that remove noise included in data (SMOTE-IPF) or enhance only border lines (Borderline SMOTE). This paper proposes a method to ultimately improve classification performance by improving the processing method for anomaly data in the traditional SMOTE method that amplifies minority classification data. The proposed method consistently presented relatively high classification performance compared to the existing methods through experiments.

Method for Assessing Landslide Susceptibility Using SMOTE and Classification Algorithms (SMOTE와 분류 기법을 활용한 산사태 위험 지역 결정 방법)

  • Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.6
    • /
    • pp.5-12
    • /
    • 2023
  • Proactive assessment of landslide susceptibility is necessary for minimizing casualties. This study proposes a methodology for classifying the landslide safety factor using a classification algorithm based on machine learning techniques. The high-risk area model is adopted to perform the classification and eight geotechnical parameters are adopted as inputs. Four classification algorithms-namely decision tree, k-nearest neighbor, logistic regression, and random forest-are employed for comparing classification accuracy for the safety factors ranging between 1.2 and 2.0. Notably, a high accuracy is demonstrated in the safety factor range of 1.2~1.7, but a relatively low accuracy is obtained in the range of 1.8~2.0. To overcome this issue, the synthetic minority over-sampling technique (SMOTE) is adopted to generate additional data. The application of SMOTE improves the average accuracy by ~250% in the safety factor range of 1.8~2.0. The results demonstrate that SMOTE algorithm improves the accuracy of classification algorithms when applied to geotechnical data.

Discriminant analysis for unbalanced data using HDBSCAN (불균형자료를 위한 판별분석에서 HDBSCAN의 활용)

  • Lee, Bo-Hui;Kim, Tae-Heon;Choi, Yong-Seok
    • The Korean Journal of Applied Statistics
    • /
    • v.34 no.4
    • /
    • pp.599-609
    • /
    • 2021
  • Data with a large difference in the number of objects between clusters are called unbalanced data. In discriminant analysis of unbalanced data, it is more important to classify objects in minority categories than to classify objects in majority categories well. However, objects in minority categories are often misclassified into majority categories. In this study, we propose a method that combined hierarchical DBSCAN (HDBSCAN) and SMOTE to solve this problem. Using HDBSCAN, it removes noise in minority categories and majority categories. Then it applies SMOTE to create new data. Area under the roc curve (AUC) and F1 scores were used to compare performance with existing methods. As a result, in most cases, the method combining HDBSCAN and synthetic minority oversampling technique (SMOTE) showed a high performance index, and it was found to be an excellent method for classifying unbalanced data.

On the Mass Transfer of Nicotine in Smoking Cigarette (흡연 궐련중의 니코틴이행에 관하여)

  • 김찬호;유점호;반유선;류익상
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.3 no.2
    • /
    • pp.83-88
    • /
    • 1981
  • Transfer of nicotine into the mails stream of smote in Korean commercial cigarettes was investigated. The mass transfer of nicotine into tile main stream of smote and accumulation of nicotine in cigarette filler got higher as the puffing number increased. Only about 14oyo of nicotine ill a cigarette was puffed into mouth end. and the rest of the nicotine went to side stream of smote or converted to other volatile bases.

  • PDF

Research on Fault Diagnosis of Wind Power Generator Blade Based on SC-SMOTE and kNN

  • Peng, Cheng;Chen, Qing;Zhang, Longxin;Wan, Lanjun;Yuan, Xinpan
    • Journal of Information Processing Systems
    • /
    • v.16 no.4
    • /
    • pp.870-881
    • /
    • 2020
  • Because SCADA monitoring data of wind turbines are large and fast changing, the unbalanced proportion of data in various working conditions makes it difficult to process fault feature data. The existing methods mainly introduce new and non-repeating instances by interpolating adjacent minority samples. In order to overcome the shortcomings of these methods which does not consider boundary conditions in balancing data, an improved over-sampling balancing algorithm SC-SMOTE (safe circle synthetic minority oversampling technology) is proposed to optimize data sets. Then, for the balanced data sets, a fault diagnosis method based on improved k-nearest neighbors (kNN) classification for wind turbine blade icing is adopted. Compared with the SMOTE algorithm, the experimental results show that the method is effective in the diagnosis of fan blade icing fault and improves the accuracy of diagnosis.

A Hybrid Oversampling Technique for Imbalanced Structured Data based on SMOTE and Adapted CycleGAN (불균형 정형 데이터를 위한 SMOTE와 변형 CycleGAN 기반 하이브리드 오버샘플링 기법)

  • Jung-Dam Noh;Byounggu Choi
    • Information Systems Review
    • /
    • v.24 no.4
    • /
    • pp.97-118
    • /
    • 2022
  • As generative adversarial network (GAN) based oversampling techniques have achieved impressive results in class imbalance of unstructured dataset such as image, many studies have begun to apply it to solving the problem of imbalance in structured dataset. However, these studies have failed to reflect the characteristics of structured data due to changing the data structure into an unstructured data format. In order to overcome the limitation, this study adapted CycleGAN to reflect the characteristics of structured data, and proposed hybridization of synthetic minority oversampling technique (SMOTE) and the adapted CycleGAN. In particular, this study tried to overcome the limitations of existing studies by using a one-dimensional convolutional neural network unlike previous studies that used two-dimensional convolutional neural network. Oversampling based on the method proposed have been experimented using various datasets and compared the performance of the method with existing oversampling methods such as SMOTE and adaptive synthetic sampling (ADASYN). The results indicated the proposed hybrid oversampling method showed superior performance compared to the existing methods when data have more dimensions or higher degree of imbalance. This study implied that the classification performance of oversampling structured data can be improved using the proposed hybrid oversampling method that considers the characteristic of structured data.

Improving minority prediction performance of support vector machine for imbalanced text data via feature selection and SMOTE (단어선택과 SMOTE 알고리즘을 이용한 불균형 텍스트 데이터의 소수 범주 예측성능 향상 기법)

  • Jongchan Kim;Seong Jun Chang;Won Son
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.395-410
    • /
    • 2024
  • Text data is usually made up of a wide variety of unique words. Even in standard text data, it is common to find tens of thousands of different words. In text data analysis, usually, each unique word is treated as a variable. Thus, text data can be regarded as a dataset with a large number of variables. On the other hand, in text data classification, we often encounter class label imbalance problems. In the cases of substantial imbalances, the performance of conventional classification models can be severely degraded. To improve the classification performance of support vector machines (SVM) for imbalanced data, algorithms such as the Synthetic Minority Over-sampling Technique (SMOTE) can be used. The SMOTE algorithm synthetically generates new observations for the minority class based on the k-Nearest Neighbors (kNN) algorithm. However, in datasets with a large number of variables, such as text data, errors may accumulate. This can potentially impact the performance of the kNN algorithm. In this study, we propose a method for enhancing prediction performance for the minority class of imbalanced text data. Our approach involves employing variable selection to generate new synthetic observations in a reduced space, thereby improving the overall classification performance of SVM.

Development of empirical formula for imbalanced transverse dispersion coefficient data set using SMOTE (SMOTE를 이용한 편중된 횡 분산계수 데이터에 대한 추정식 개발)

  • Lee, Sunmi;Yoon, Taewon;Park, Inhwan
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.12
    • /
    • pp.1305-1316
    • /
    • 2021
  • In this study, a new empirical formula for 2D transverse dispersion coefficient was developed using the results of previous tracer test studies, and the performance of the formula was evaluated. Since many tracer test studies have been conducted under the conditions where the width-to-depth ratio is less than 50, the existing empirical formulas developed using these imbalanced tracer test results have limitations in applying to rivers with a width-to-depth ratio greater than 50. Therefore, in order to develop an empirical formula for transverse dispersion coefficient using the imbalanced tracer test data, the Synthetic Minority Oversampling TEchnique (SMOTE) was used to oversample new data representing the properties of the existing tracer test data. The hydraulic data and the transverse dispersion coefficients in conditions of width-to-depth ratio greater than 50 were oversampled using the SMOTE. The reliability of the oversampled data was evaluated using the ROC (Receiver Operating Characteristic) curve. The empirical formula of transverse dispersion coefficient was developed including the oversampled data, and the performance of the results were compared with the empirical formulas suggested in previous studies using R2. From the comparison results, the value of R2 was 0.81 for the range of W/H < 50 and 0.92 for 50 < W/H, which were improved accuracy compared to the previous studies.

Exploring the Performance of Synthetic Minority Over-sampling Technique (SMOTE) to Predict Good Borrowers in P2P Lending (P2P 대부 우수 대출자 예측을 위한 합성 소수집단 오버샘플링 기법 성과에 관한 탐색적 연구)

  • Costello, Francis Joseph;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.17 no.9
    • /
    • pp.71-78
    • /
    • 2019
  • This study aims to identify good borrowers within the context of P2P lending. P2P lending is a growing platform that allows individuals to lend and borrow money from each other. Inherent in any loans is credit risk of borrowers and needs to be considered before any lending. Specifically in the context of P2P lending, traditional models fall short and thus this study aimed to rectify this as well as explore the problem of class imbalances seen within credit risk data sets. This study implemented an over-sampling technique known as Synthetic Minority Over-sampling Technique (SMOTE). To test our approach, we implemented five benchmarking classifiers such as support vector machines, logistic regression, k-nearest neighbor, random forest, and deep neural network. The data sample used was retrieved from the publicly available LendingClub dataset. The proposed SMOTE revealed significantly improved results in comparison with the benchmarking classifiers. These results should help actors engaged within P2P lending to make better informed decisions when selecting potential borrowers eliminating the higher risks present in P2P lending.