• Title/Summary/Keyword: SMD Sauter

Search Result 194, Processing Time 0.029 seconds

A Study on NOx Reduction Efficiency according to Various Injectors used for De-NOx System (흡장형 De-NOx 촉매(LNT) 시스템의 환원제 분무용 인젝터 종류에 따른 NOx저감효율 연구)

  • Han, Young-Deok;Oh, Jung-Mo;Lee, Ki-Hyung;Lee, Jin-Ha;Mun, Woong-Ki
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.1
    • /
    • pp.117-124
    • /
    • 2011
  • Automotive engines require strategies to fulfill the emission regulations in terms of NOx and PM. A dramatic reduction in NOx and PM emissions could be achieved with high pressure injection, innovative combustion strategies and EGR. Recently, Lean NOx Trap (LNT) and Urea-SCR are considered as more practical strategy to suppress the engine-out emissions substantially for copying with severe regulation. These systems need to reduce the reducing agent injection system which has a huge impact on NOx purification efficiency. In this paper, different three injectors have been used to investigate spray characteristics and engine emission test was conducted to clarify the effect of these injectors on the NOx reduction.

The Characteristics of Swirl Spray Combustion in Gas Turbine Combustor (가스터빈 연소기내의 선회분무연소 특성)

  • Hong, Jeong-Gu;Kim, Hyeok-Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.8
    • /
    • pp.2721-2730
    • /
    • 1996
  • The present study conducted experimental study of spray combustion to investigate the effect of the inlet conditions of fuel and air on the flame structure, the flame stability and the characteristics of emission in the can-type model of a gas turbine combustor. In the experiment, the diameter of fuel droplet was measured using Malvern particle size analyser and temperatures in the combustion chamber were measured with R-type shielded thermocouple. In addition, flame structure was taken picture with camera and analysed. Gas analyser was also used to analyse the concentration of each components of exhausting gas. The experimental results showed that the flame condition was optimal with swirl number, 0.63 and equivalence ratio, 0.5 for controlling the flame stability, the combustion temperature and the NOx concentration. The present study concluded that both the flame structure and the emission formation were strongly affected by the swirl intensity, which selection was found as an important parameter for either stabilizing flame or lowering the quantity of NOx.

A Study on the Flow Characteristics of Gasoline Spray across the Suction Air Stream (흡입공기분류를 가로지르는 가솔린 분무의 유동 특성 연구)

  • 김원태;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.9
    • /
    • pp.63-74
    • /
    • 1999
  • When a fuel was injected with opening the intake valve of a port fuel injection engine, the spray atomization and flow characteristics in the intake port have a strong influence on the mixture formation of a combustion chamber. Thus , this study was to clarify the spray flow characteristics of the air-assist gasoline spray with fine dropkets across the suction air stream in model intake port. For the simulated opening intake valve in port, suction air stream was varied to 10m/s ∼30m/s. And fuel pressur ewas fixed to 300kPa, but air assist pressure was varied to 0∼25kPa for a vairable spray conditions. Spray flow trajectory was investigated by means of laser sheet visualization and the measurements of droplet sizes and velocities were made by PDPA system. Measured droplets within the spray flow field were subdivided into five size groups and then, the flow characteristics of droplet size groups were investigated to the spray across a suction air stream.

  • PDF

An Experimental Study on the Break-up Characteristics of Twin-Fluid Nozze According to tile Variations of Feeding Mass-ratio (공급 질량비 변화에 따른 2유체 노즐의 액주분열특성에 관한 실험적 연구)

  • Kang, S.J.;Oh, J.H.;Rho, B.J.
    • Journal of ILASS-Korea
    • /
    • v.1 no.1
    • /
    • pp.63-75
    • /
    • 1996
  • The purpose of this study is to investigate the break-up characteristics by taking advantage of a two-phase coaxial nozzle. Air and water are utilized as working fluids and the mass ratio air/water has been controlled to characterize the atomization, diffusion and development of mixing process. By way of a photographic technique, conventional developing structures and diffusion angles have been analyzed systematically with variations of mass ratios. The turbulent flow components of the atomized particles were measured by a two channel LDV system and the data were treated by an on-lined measurement equipment. According to the photographic results the spreading angles decreased because the axial inertia moment was relatively higher than the lateral one with respect to the increase of mass ratio. It is found the jet flow diffuses linearly in a certain limit region while the atomizing characteristics, in terms of the distributions of particle diameters did not show particular differences. It may be expected that these fundamental results can be used as reference data in studying the atomization, breakup and diffusions.

  • PDF

SPRAY STRUCTURE OF HIGH PRESSURE GASOLINE INJECTOR IN A GASOLINE DIRECT INJECTION ENGINE

  • Lee, Chang Sik;Chon, Mun Soo;Park, Young Cheol
    • International Journal of Automotive Technology
    • /
    • v.2 no.4
    • /
    • pp.165-170
    • /
    • 2001
  • This study is focussed on the investigation of spray characteristics from the high pressure gasoline injector for the application of gasoline direct injection engine. For the analysis of spray structure of high pressure gasoline injector; the laser scattering method with a Nd-Yag laser and the Phase Doppler particle analyzer system were applied to observe the spray development and the measurement of the droplet size and velocity of the spray, respectively. Also spatial velocity distribution of the spray droplet was measured by use of the particle image velocity system. Experimental results show that high pressure gasoline injector shapes the hollow-cone spray, and produce the upward ring shaped vortex on the spray surface region. This upward ring shaped vortex promotes the secondary atomization of fuel droplets and contributes to a uniform distribution of fuel droplets. Most of fuel droplets are distributed under 31$\mu m$ of the mean droplet size (SMD) and the frequency distribution of the droplet size under 25$\mu m$ is over 95% at 7 MPa of injection pressure. According to the experimental results of PIV system, the flow patterns of the droplets velocity distribution in spray region are in good agreement with the spray macroscopic behaviors obtained from the visualization investigation.

  • PDF

A Review on the Mixture Formation and Atomization Characteristics of Oxygenated Biodiesel Fuel (바이오디젤 연료의 혼합기 형성 및 미립화 증진 방안)

  • Suh, Hyun Kyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.183-192
    • /
    • 2014
  • In this work, the mixture formation and atomization characteristics of biodiesel fuel were reviewed under various test conditions for the optimization of compression-ignition engine fueled with biodiesel. To achieve these, the effect of nozzle caviting flow, group-hole nozzle geometry and injection strategies on the injection rate, spray evolution and atomization characteristics of biodiesel were studied by using spray characteristics measuring system. At the same time, the fuel heating system was installed to obtain the effect of fuel temperature on the biodiesel fuel atomization. It was revealed that cavitation in the nozzle orifice promoted the atomization performance of biodiesel. The group-hole nozzle geometry and split injection strategies couldn't improve it, however, the different orifice angles which were diverged and converged angle of a group-hole nozzle enhanced the biodiesel atomization. It was also observed that the increase of fuel temperature induced the quick evaporation of biodiesel fuel droplet.

LES of breakup and atomization of a liquid jet into cross turbulent flow (비정상 난류 유동장에서 수직 분사 액주의 분열 및 기화에 관한 LES)

  • Yang, Seung-Joon;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.99-102
    • /
    • 2009
  • LES(Large eddy simulation) of breakup and atomization of a liquid jet into cross turbulent flow was performed. Two phase flow between a gas phase and a liquid phase was modeled by a mixed numerical scheme of both Eulerian and Lagrangian methods for gas and liquid phases respectively. The first and second breakup of liquid column was observed. The penetration depth in cross flow was comparable with experimental data for several variant of a liquid-gas momentum flux ratio by varying liquid injection velocities. SMD(Sauter Mean Diameter) distribution downstream of jet was analyzed.

  • PDF

An Experimental Study on the Atomization Characteristics of the Rotary Cup Atomizer (회전컵 무화기의 미립화 특성에 관한 실험적 연구)

  • Jin, S.B.;Cho, D.J.;Yoon, S.J.
    • Journal of ILASS-Korea
    • /
    • v.6 no.4
    • /
    • pp.14-21
    • /
    • 2001
  • Rotary atomizer is widely used in practical application ranging from combustion, cooling, spray drying, agriculture, chemical system. Rotary cup atomizer has some advantages such as extreme versatility and liquid atomization successfully varying widely in viscosity. In rotary atomization, the feed liquid is centrifugally accelerated to high velocity and the liquid extends over the rotating surface as a thin film before being discharged into an atmosphere. The degree of rotary atomization depends upon peripheral speed, feed rate, liquid properties and atomizer design. An important asset is that thickness and uniformity of the liquid sheet can readily be controlled by regulating the liquid flow rate and the rotational speed. LDPA(Laser Diffraction Particle Analyser) and image aquisition system are used to measure drop size distribution and spray pattern. The atomization characteristics of the rotary cup atomizer is investigated experimentally by varing the liquid feed rate, rotary cup speed and air velocity for atomization. As a results, the effect of air velocity on the atomization characteristics such as drop size and spray uniformity is considerably greater than variation of those with liquid feed rate.

  • PDF

Effect of Nozzle Hole Number on Atomization Characteristics of DME Fuel Spray using High Pressure Injector (고압 인젝터의 노즐 홀 수가 DME 연료분무의 미립화 특성에 미치는 영향)

  • Lee, Jongtae;Lee, Sanghoon;Chon, Mun Soo
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.216-220
    • /
    • 2014
  • This paper presents effect of nozzle hole number on atomization characteristic of DME fuel spray using three different type of injector having the hole number of 6, 7 and 8. For this study, PDPA(phase Doppler particle analyzer) experiment was performed in terms of $T_{ASOE}$ under various injection pressure. To compare general trend of atomization characteristic, the law data were ensemble averaged based on $T_{eng}$ of 0.2 ms. Results showed that the droplet diameter in terms of SMD(Sauter Mean Diameter) was reduced as increase in injection pressure. Increasing the number of hole lead to reduce in droplet diameter, but no significant reduction in diameter was observed between hole number of 7 and that of 8. In addition, increasing the number of hole resulted in decrease in droplet velocity which is considered as the effect of reduction in spray momentum due to decreasing of fuel quantity per each hole.

Effect of Injection Condition on the Diesel. Fuel Atomization in a Multi-Hole Nozzle (다공 노즐에서 분사조건이 디젤 연료의 미립화 특성에 미치는 영향)

  • Sub, Hyun-Kyu;Kim, Jee-Won;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.14 no.1
    • /
    • pp.8-14
    • /
    • 2009
  • This paper present the diesel fuel spray evolution and atomization performance in a multi-hole nozzle in terms of injection rate, spray evolutions, and mean diameter and velocity of droplets in a compression ignition engine. In order to study the effect of split injection on the diesel fuel spray and atomization characteristic in a multi-hole nozzle, the test nozzle that has two-row small orifice with 0.2 mm interval was used. The time based fuel injection rate characteristics was analyzed from the pressure variation generated in a measuring tube. The spray characteristics of a multi-hole nozzle were visualized and measured by spray visualization system and phase Doppler particle analyzer (PDPA) system. It was revealed that the total injected fuel quantities of split injection are smaller than those of single injection condition. In case of injection rate characteristics, the split injection is a little lower than single injection and the peak value of second injection rate is lower than single injection. The spray velocity of split injection is also lower because of short energizing duration and small injection mass. It can not observe the improvement of droplet atomization due to the split injection, however, it enhances the droplet distributions at the early stage of fuel injection.

  • PDF