• Title/Summary/Keyword: SMD Sauter

Search Result 194, Processing Time 0.023 seconds

INFLUENCE OF ALR ON DISINTEGRATION CHARACTERISTICS IN PNEUMATIC SPRAY

  • Lee, S.G.;Joo, B.C.;Kim, K.C.;Rho, B.J.
    • International Journal of Automotive Technology
    • /
    • v.1 no.2
    • /
    • pp.95-100
    • /
    • 2000
  • The droplet and the turbulent characteristics of a counterflowing internal mixing pneumatic nozzle mainly focused. The measurements were made using a Phase Doppler Particle Analyzer under the different air pressures. The nozzle with tangential-drilled holes at an angle of 30 to the central axis has been designed. The spatial distributions of velocities, fluctuating velocities, droplet diameters and SMD were quantitatively and qualitatively fluctuating velocities were substantially higher than the radial and the tangential ones. This implies that the disintegration process is enhanced with the higher air pressure. The larger droplets were detected near the spray centerline at the upstream while the smaller ones were generated at the downstream. This was attributed to the lower rates of spherical particles which were not subject to instantaneous breakup. However, substantial increases in SMD from the central part tower spray periphery were predictable in downstream regions.

  • PDF

An Experimental Study on the Atomization Characteristics in an Intermittent Multi-hole Diesel Spray (간헐 다공 디젤 분무의 미립화 특성에 관한 실험적 연구)

  • 이지근;강신재;노병준
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.3
    • /
    • pp.27-34
    • /
    • 2001
  • This experimental study is to investigate the intermittent spray characteristics of the multi-hole diesel nozzle with a 2-spring nozzle holder. Without changing the total orifice exit area, its hole number varied from 3($d_n=0.42mm$) to 8($d_n$=0.25mm). Through the use of the 2-D PDPA(phase Doppler particle analyzer), the droplet diameter and the velocity of the diesel spray injected intermittently from the multi-hole nozzle into the still ambient were measured. And the calculations of time-resolved diameters, SMD and AMD were made. The results can be summarized as follows. The spray of the multi-hole nozzle consisted of three parts. These are the leading edge, the central part and the trailing edge. And most of droplets produced at the trailing edge of spray. In the spray flow field, the measuring position which represented the intermittent spray characteristics well was near the nozzle tip. But at the downstream of the spray, its characteristics disappeared, and spray behavior showed a quasi steady state regardless of the time evolution of the spray. The overall mean SMD of the spray increased with the spray development, and showed their maximum value near 1.5ms regardless of hole number.

  • PDF

An Experimental Study on Droplet Size Characteristics of Liquid Jets in Subsonic Crossflow (수직분사제트에서 액적크기특성에 대한 실험적 연구)

  • Kim, Min-Ki;Song, Jin-Kwan;Kim, Jin-Ki;Yoon, Young-Bin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.59-63
    • /
    • 2006
  • A direct photograph measurement technique was used to determine the spatial distribution of the spray droplet diameter in subsonic crossflow and it also obtain that SMD distribution by using PLLIF technique. The injector internal flow was classified as three modes such as a normal, cavitation, and hydraulic flip. The objectives of this research are getting a droplet distribution and drop size measurement of normal flow and compare with the other flow effects. Although the study showed visually that drop size were spatially dependent of Air-stream velocity, fuel injection velocity, and normalized distance from the injector exit length.(x/d, y/d) There are also difference characteristics between cavitation, hydraulic flip and the normal flow.

  • PDF

Atomization Characteristics of 2-Phase Atomizer with the change of Mixing Chamber Structure (혼합실 구조 변경에 의한 2상 노즐의 미립화 특성)

  • Ha, M.H.;Kim, K.C.;NamKung, J.H.;Lee, S.G.;Rho, B.J.;Kang, S.J.
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.699-704
    • /
    • 2001
  • The purpose of this study is to present the atomization characteristics of 2-phase internal mixing nozzle. The obtained results are considered as the essential information of understanding the spray characteristics from the nozzle exit of an aerated nozzle. In this study, SMD and AMD are mainly measured at the distance of Z=10, 20, 50, 80, 120 and 170mm from the nozzle tip. The liquid flow rate was kept at 1.8g/s and the air feeding pressure was changed from 10kpa to 100kpa increasingly. The analysis of the acquired data was performed by 2-D PDPA system and in order to get the realibility, the number of data used in calculating the SMD & AMD were 10,000 samples.

  • PDF

Characteristics of Air-assist Spray Injected into Cross-flow with Various Gas-liquid Ratio (횡단유동으로 분사하는 이유체노즐의 기체-액체비에 따른 분무특성)

  • Cho, Woo-Jin;Lee, In-Chul;Lee, Bong-Su;Lee, Hyo-Won;Koo, Ja-Ye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.159-162
    • /
    • 2007
  • The characteristic of air-assist spray injected into subsonic crossflow were studied experimentally. External-mixing air assist injector of Orifice nozzle with L/d of 3 were tested with various air-liquid ratio. Shadowgraph photography was performed for spray visualization and trajectory of spray measurements. The detailed spray structure was characterized in terms of SMD, velocity, and volume flux, using PDPA. Experimental results indicate that penetration length was increased and spray distribution was accelerated by increasing air-liquid ratio.

  • PDF

A Study on the Various Characteristics of Ultrasonic-Energy-Added W/O Type Emulsified Fuel ( I ) - attaching importance to stability and spray characteristics - (초음파에너지 조사 W/O type 유화연료의 제반특성에 관한 연구(I) - 안정성 및 분무특성을 중심으로 -)

  • Kim, Yong-Cheol;Song, Yong-Sik;Ryu, Jeong-In
    • Journal of ILASS-Korea
    • /
    • v.9 no.3
    • /
    • pp.22-28
    • /
    • 2004
  • This study is concerned about the characteristics of ultrasonic-energy-added W/O type emulsified fuel. The distilled water was mixed with diesel oil by using ultrasonic energy fuel feeding system and then the SMD of sprayed droplets was measured to find out atomization characteristics of emulsified fuel by using the Malvern 2600 system. The capacitance value was measured to verify stability of the same specimen by using the digital LCR meter, EDC1630 additionally. The main results are as follows; 1) The more measuring distance increases between one hole nozzle tip and analyser bearm, the more SMD increases. 2) The more water content increases, the more capacitance value increases depending on the time. Main Parameters of the study are the amount of water content $0{\sim}30%$ by 5% in emulsified fuel, and the measurement distance, $20{\sim}140mm$ by 10mm or 20mm between nozzle tip and analyser beam.

  • PDF

Spray Characteristics according to Fluid Properties and Electric Parameters of Electrospray (정전분무의 유체 물성치와 정전 매개변수 따른 분무특성)

  • Kim, JiYeop;Hong, Jung Goo
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.81-88
    • /
    • 2020
  • Electrospray is used in various industries because it can produce continuous and uniform droplets. However, it is difficult to find optimal spraying condition due to lack of data in various conditions. In this study, various conditions were divided into electric parameters and fluid property. The electric parameters set Nozzle to Substrate(NTS), nozzle diameters and the fluid property set viscosity and conductivity as conditions. In this study, it observes spray patterns, Sauter Mean Diameter(SMD) according to conditions. As a result, fluid properties had a greater effect on the cone-Jet mode than on the nozzle diameter, NTS, and flowrate. All of solutions have Stable cone-jet mode at voltage of 8.5 kV, NTS of 20 mm and nozzle diameter of 0.2 mm. SMD has 27% different depending on viscosity and conductivity. The increased flowrate and viscosity are rising break-up length and thickening jet also jet is thinned by increased conductivity. Experiments have confirmed that the jet is thickened by increased flowrate and viscosity, and that the jet is thinned by conductivity.

Characteristics of Spray from Pressure-Swirl Nozzle with Different Liquid Properties and Nozzle Geometries (액체의 물성치와 노즐의 형상 변화에 따른 압력스월 노즐의 분무 특성)

  • Choe, Yun-Cheol;Jeong, Ji-Won;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1813-1820
    • /
    • 2001
  • The purpose of this study was to investigate the significant characteristics in atomization process of industrial etching spray fur the design or Precise pressure-swirl nozzles. The experiment was carried out with different viscosities and densities of the liquid. The macro characteristics of liquid spray, such as the spray angle and breakup process were captured by PMAS and the micro characteristics of liquid spray. such as droplet size and velocity measurements were obtained by PDA. The droplet axial and radial velocity and SMD were measured along axial and radial direction. The RMS of two velocities was measured along radial direction. It was found that the fluid with higher kinematic viscosity resulted in the larger SMD and the lower mean droplet velocity. And we could divide breakup processes into three regions that is atomization, non-dilution and dilution one in spray of pressure-swirl nozzle. The radial as well as axial velocity of droplet played an important role in the atomization process of higher kinematic viscosity fluid.

Atomization and Evaporation Characteristics of DME Fuel for the Application of HCCI Diesel Engine (HCCI 디젤엔진 연료적용을 위한 DME 연료 미립화 및 증발특성)

  • Chon, Mun-Soo;Hwang, Yong-Ha;Suh, Hyun-Kyu;Lee, Chang-Sik
    • Journal of ILASS-Korea
    • /
    • v.11 no.3
    • /
    • pp.140-146
    • /
    • 2006
  • The objective of this work is to analyze the atomization and evaporation characteristics of dimethyl ether(DME) fuel for the application of HCCI diesel engine. In order to investigate the spray behavior of DME fuel, the macroscopic and microscopic characteristics were investigated in terms of spray development, spray tip penetration, impingement time, SMD, and axial mean velocity under the various injection timing and ambient conditions. For the illumination of spray, the spray visualization system was composed of a Nd:YAG laser and an ICCD camera and laser-sheet method was used. The atomization characteristics of DME fuel are analyzed by using phase Doppler particle analyzer (PDPA) system It was reveal that the spray development of DME is slower and rapidly disappeared as elapsed time after start of injection at the same injection duration. The impingement timing of diesel fuel was fester than that of DME fuel. The comparison of spray atomization characteristics in both fuels shows that diesel fuel has a large SMD value that DME.

  • PDF

A Study on Spray Behavior of DME-LPG Blended Fuels in a Common-rail Injection System (커먼레일 분사 시스템에서 DME-LPG 혼합연료의 분무거동에 관한 연구)

  • Kim, W.I.;Woo, S.C.;Lee, C.S.;Lee, K.H.
    • Journal of ILASS-Korea
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • This study is to investigate the spray behavior of DME-LPG blended fuels in common rail injection system for diesel engines. The visualization experiment was performed to analyze the macroscopic spray behavior of test fuels. In addition, the experiment using BOS(Background Oriented Schlieren) method is performed to compare liquid phase and gas phase. The test fuels are injected in high pressure chamber. The ambient pressure of high pressure chamber was formed by nitrogen gas. Spray tip penetration, spray cone angle and spray area were measured using high speed camera. SMD(Sauter Mean Diameter) and spray particle velocity were measured using the PDPA(Phase Doppler Particle Analyzer) system to analyze the microscopic properties of test fuels. The results of this experiment showed that spray tip penetration, spray cone angle and spray area of DME-LPG fuels are similar to those of DME fuel. When compared to results of experiment using BOS, significant differences of spray tip penetrations, spray cone angle and spray area are showed because of gas phase. The results of experiment using BOS method showed higher values. SMD of DME-LPG blended fuels is smaller than that of DME fuel. Velocity of DME-LPG blended fuels is faster than that of DME fuel.