• Title/Summary/Keyword: SMASH MOTION

Search Result 7, Processing Time 0.024 seconds

The Kinematic Analysis of Upper Extremities for Badminton Smash and Drop Motions depends on the Player's Level (배드민턴 스매시와 드롭 동작 시 선수의 기량 차이에 따른 상지 동작의 운동학적 비교 분석)

  • Jo, A-Ra;Yoo, Si-Hyun;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.3
    • /
    • pp.201-208
    • /
    • 2013
  • The aim of this study was to investigate badminton smash and drop motion depends on player's level. To perform this study, ten male badminton players were participated: five skilled players (SG, age: $21.6{\pm}1.1$ yrs, height: $181.4{\pm}6.8$ cm, body mass: $72.4{\pm}5.7$ kg, career: $11.2{\pm}1.1$ yrs) and five less-skilled players (LSG, age: $21.2{\pm}1.1$ yrs, height: $180.2{\pm}5.6$ cm, body mass: $73.6{\pm}6.7$ kg, career: $10.6{\pm}0.9$ yrs). Three-dimensional motion analysis with 7 infrared cameras was performed with a sampling frequency as 200 Hz. Player's swing motion was divided into four events: starting motion (E1), backswing (E2), impact (E3), following (E4). For all upper joints, LSG showed greater angle differences between drop and smash motions than that of SG at E3 (p<.05). For all upper joints, greater angular velocities were found in SG than that of LSG. For both groups, significantly smaller angular velocities were found in drop motion than that of smash motion (p<.05). The greater sequential angular velocities (proximal to distal) were found in SG than LSG during smash motion. Based on our findings, performing the same motion between drop and smash would be related to enhance performance at badminton competition. It is expected that these results will be useful in developing a training program for enhancing performance of badminton athletes.

Effects of Manual Mobilization and Self-exercise on Hip Joint Mobility, Body Balance, Sargent Jump and Smash Speed in Elite Badminton Players (엉덩관절 관절가동술과 자가-운동이 엘리트 배드민턴 선수의 관절가동성과 신체균형능력, 점프력, 스매시 속도에 미치는 영향 )

  • Hye-Min Ko;Suhn-Yeop Kim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.1
    • /
    • pp.37-50
    • /
    • 2023
  • PURPOSE: This study examined the effects of various interventions for improving the hip joint range of motion on elite badminton players, including body balance ability, jumping power, smash speed, and joint range of motion. METHODS: The study was conducted on elite badminton players belonging to the S badminton team in Yongin, Gyeonggi-do, and the M badminton team in Suwon, Gyeonggi-do. Twenty-one elite badminton players were selected; they were assigned randomly to Experimental Group 1 (n = 11) and Experimental Group 2 (n = 10). Before and after the intervention, the hip joint range of motion, modified star excursion balance test, Sargent jump, and smash speed were measured. In Experimental Group 1, hip joint manual mobilization was applied by a physical therapist, and hip self-exercise performed by the athletes was applied in Experimental Group 2. This intervention was applied once a day, three times a week, for four weeks. RESULTS: A significant increase in the hip joint range of motion (flexion and extension) and modified star excursion balance test (posteromedial direction) was observed in Experimental Group 1 (hip joint mobilization applied group) compared to Experimental Group 2 (hip joint self-exercise applied group) (p < .05). CONCLUSION: When elite level badminton players require improvement in hip flexion and extension range of motion and posteromedial body balance, hip joint mobilization is more effective than hip self-exercise application.

Comparison of the Kinematic Variables in the Badminton Smash Motion (숙련도에 따른 배드민턴 스매쉬 동작의 운동학적 변인 비교)

  • So, Jae-Moo;Han, Sang-Min;Seo, Jin-Hee
    • Korean Journal of Applied Biomechanics
    • /
    • v.13 no.2
    • /
    • pp.65-74
    • /
    • 2003
  • The purpose of this study was to analyze kinematic variables in the badminton smash motion through 3-dimensional image analysis. The kinematic variables were velocity of joints in upper limbs, the angle of wrist in the impact, and the angular velocity of the top of racket head. The smash motions of four male badminton players in H University and four male students at department of the physical education in K University who were not majoring in badminton were analyzed kinematically and the attained conclusions were as follow. 1. The velocity of segments in upper limbs of the unskilled group was faster than that of the skilled group. The movement pattern was fast back swing-slow impact moment-fast fellow through in the unskilled group, but slow back swing-fast impact moment-slow follow through in the sullied group. 2. As the BS phases, the velocity of segment in right shoulder was different significantly between groups. Right elbow and right wrist segments, velocity of racket head was different significantly between groups(p<.05) by IP phases. As the FT phases, there was no significant difference. 3. The angle of right wrist at the impact, the angle of palm flexion and the angle of palm flexion in aspect were shown that the skilled group was higher than unskilled group. There was no significant difference. 4. The velocity of racket head was shown that the unskilled group has fast velocity, but the angle velocity was shown the unskilled group has slow. 5. The angle velocity of racket head in aspect were no significant difference between groups, but maximal angle velocity was different significantly between groups(p<.05).

Analysis of Differences in Muscle Activity according to Badminton Stroke Movements (배드민턴 스트로크 동작에 따른 근활성도 차이 분석)

  • Kim Hwi-Tae;Kim Ki-Hong;Jeong Huan-Jong;Kim Byung-Kwan
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.2
    • /
    • pp.519-524
    • /
    • 2023
  • The purpose of this study is to construct basic data for efficient technical training by investigating the difference in muscle activity during badminton technical movements involving jump motions similar to game situations. Seven male badminton players were randomly assigned to perform smash, drop, and clear techniques, and electromyograms were measured during the implementation of three technical movements. Measured EMG was calculated by RMS and one-way ANOVA was performed. The muscle activity of the smashing motion did not show any significant difference according to the site. In drop motion, activity of PM in the upper extremity muscles was lower than that of BC and ECR, and FCR activity was lower than that of EC. The activity of ECR was higher than that of PM and FCR. The activity of ES in trunk muscles was lower than that of RF and GM. RF activity of lower extremity muscles was higher than that of ES and BF. In clear motion, the activity of TC in upper extremity muscle was higher than FCR. The activity of ES in trunk muscles was lower than that of BF. RF activity of lower extremity muscles was higher than that of BF, and BF activity was lower than that of RF and GM. The activity of GM was higher than that of BF. As for muscle activity according to badminton skills, smash and drop motions were higher than clear motions in FCR, and clear motions were higher than smash and drop motions in RA. In conclusion, it is considered that muscle activity during the badminton game is different according to the characteristics of each skill, and FCR can affect the smash and drop, and RA can affect the clear motion.

Analysis of Relationship between Biomechanical Factors and Driver's Distance during Golf Driver Swing (골프 드라이버 스윙 시 운동역학 요인들과 비거리 관련성 분석)

  • Lim, Young-Tae;Park, Jun-Sung;Lee, Jae-Woo;Kwon, Moon-Seok
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • The purpose of this study was to analyze relationship between biomechancal factors and diver's distance during golf driver swing. Fifteen professional golfers were participated in as subject. Eight motion capture cameras(250 Hz), 2 force plates(1000 Hz), and Trackman were used to collect kinematic and kinetic datas. It was performed Pearson's correlation analysis using SPSS 24.0. The level of significance was at .05. Ball speed, club head speed, X-Factor, and ground reaction force were correlated on driving distance, However, smash factor and knee moment were not correlated on driving distnace. Ball speed, club head speed, X-Factor, and ground reaction force were effected to driving distance, but smash factor and knee moment were not effected to driving distance.

Kinematic Analysis of the Badminton Drop-shot Motion (배드민턴 드롭샷 동작의 운동학적 분석)

  • Oh, Cheong-Hwan;Choi, Su-Nam;Jeong, Ik-Su
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.1
    • /
    • pp.221-235
    • /
    • 2005
  • The purpose of this study was to analyse badminton players' drop-shots, in order' to make players understand the principles of drop-shot motion in badminton. Three dimensional analysis was used to measure movements such as the time required per section, the change of center of gravity, joint angle and speed, and joint speed. The results of this study revealed as follows: (1) top players are faster than amateurs in the total time required per section; (2) top players moved more in the x-axis and z-axis, while amateurs moved more in the y-axis; (3) the inclination of amateurs was greater than that of top players in all phases; (4) amateurs showed larger angle on the shoulder joints than top players in the first phase, while top players showed larger angle on the shoulder joint than amateurs in the second and third phase. Amateurs' angle was larger on angle joint in the first phase than top players' ones, while top players' angle was larger in the third phase than amateurs; (5) the speed of racket head of top players was faster than that of amateurs; and the velocity of the center of gravity of amateurs was greater than that of the top players. The findings of this study were that gravity decreases during impact and then the velocity increases to perform the follow-through and making the swing fast by increasing the speed of the racket head is most important.

Correlation Analysis of The X-Factor, X-Factor Stretch and Swing-Related Factors during Drive Swing (드라이버 스윙 시 X-Factor, X-Factor Stretch와 스윙 관련 변인의 상관관계 분석)

  • Lee, Kyung-Hun;Kwon, Moon-Seok;Lim, Young-Tae
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.149-155
    • /
    • 2015
  • Purpose : Recently, many researchers and golf coachers demonstrated that X-factor and X-factor stretch had a co-relationship with driving distance. However, its relationship is still controversial and ambiguous. Thus, the aim of this study was to examine the relationship among X-factor, X-factor stretch and swing-related factors, including driving distance in elite golfers. Method : Seventeen male elite golfers (handicap: ${\leq}4$) with no history of musculo-skeletal injuries participated in the study. Thirty spherical retro-reflective markers were placed on including the middle point of PSIS, the right/left ASIS, the right/left lateral acromion of the scapula, driver head and shaft grip. All motion capture data was collected at 100Hz using 6 infrared cameras. Carry distance, club speed, ball speed, smash factor, launch angle, and spin rate were collected from radar-based device, TrackMan. Results : Pearson's correlation coefficient method was used to find the correlations among X-factor, X-factor stretch and swing-related factors. Positive correlations between driving distance and other swing-related factors which include club speed(r=.798, p<.001), and ball speed(r=.948, p<.001) were observed. In contrast to the swing-related factors, X-factor and X-factor stretch had no relationship to driving distance. Conclusion : These results indicate that X-factor and X-factor stretch are not key regulators in driving distance.