• Title/Summary/Keyword: SMAD2

Search Result 138, Processing Time 0.027 seconds

THE EFFECT OF BMP REGULATED SMAD PROTEIN ON ALKALINE PHOSPHATASE GENE EXPRESSION (Smad에 의한 alkaline phosphatase 유전자의 발현 조절기전)

  • Kim, Nan-Jin;Ryoo, Hyun-Mo;Kim, Hyun-Jung;Kim, Young-Jin;Nam, Soon-Hyeun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.2
    • /
    • pp.238-246
    • /
    • 2001
  • Bone morphogenetic proteins(BMPs), members of the transforming growth factor $\beta$(TGF-$\beta$) superfamily were first identified as the factors that induce ectopic bone formation in vivo, when implanted into muscular tissue. Especially BMP-2 inhibits terminal differentiation of C2C12 myoblasts and converts them into osteoblast lineage cells. In the molecular mechanism of the signal transduction of TGF-$\beta$ and related factors, intracellular signaling proteins were identified as Smad. In previous study, it has been reported that Smad 1 and Smad 5, which belong to the R-Smad family mediate BMP signaling, were involved in the induction of osteoblast differentiation in C2C12 cells. To understnad the role of Smads involved in osteogenic transdifferentiation in C2C12 cell, in present study, after we stably transfected C2C12 cells with each. Smad(Smad 1,Smad 5) expression vector, cultured for 3 days and stained for alkaline phophatase activity. ALP activity positive cells appeared in the Smad 1, Smad 5 stably transfected cell even in the abscence of BMP. After transiently co-transfected C2C12 cells with each Smad expression vector and ALP promoter, it was examined that Smad 1 and Smad 5 expression vector had increased about 2 fold ALP promoter activity in the abscence of BMP. These result suggested that both Smad 1 and Smad 5 were involved in the intracellular BMP signals which induce osteoblast differentiation in C2C12 cells. The effect of BMP on C2C12 cells with Smad 1, Smad 5 transfected were studied by using northern blot analysis. the treatment of BMP upregulated ALP mRNA level in three groups, especially upregulation of ALP was larger in Smad 1, Smad 5 transfected cell than control group. Pretreatment with cycloheximide($10{\mu}g/ml$), a protein synthesis inhibitor resulted in blocking the ALP gene expression even in BMP(100ng/ml) treated cell. These results suggested that Smad increased the level of ALP mRNA via the synthesis of a certain transcriptional regulatory protein.

  • PDF

Rebalancing SMAD7/SMAD3 Signaling Reduces Adhesion Formation during Flexor Tendon Healing

  • Ke Jiang;Yuling Li;Chao Xiang;Yan Xiong;Jiameng Jia
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.339-347
    • /
    • 2023
  • Transforming growth factor-β is a key factor in regulating adhesion formation during tendon healing. We investigated the effectiveness of SMAD family members, SMAD7 and SMAD3, in the TGF-β/Smad signaling during flexor tendon repair. Mouse flexor toe deep tendon rupture anastomosis models were made. On days 3, 7, 14, 21, and 28, the expressions of smad7 and smad3 in flexor tendon tissues were detected by RT-qPCR and western blot. Furthermore, postoperative intraperitoneal injections of SMAD7 agonists or SMAD3 antagonists were given. The degree of tendon healing was evaluated by adhesion testing and biomechanical experiments. Hematoxylin and eosin (HE) staining was used to observe the pathological changes. Immunohistochemistry was used to evaluate the expressions of collagen III, SMAD3, and SMAD7. The mRNA levels of matrix metalloproteinases, Mmp2 and Mmp9, and scleraxis (SCX) in flexor tendon tissue were detected by RT-qPCR. Smad3 expression increased and Smad7 expression decreased in flexor tendon tissue after injury. In addition, the SMAD7 agonist blocked SMAD3 phosphorylation. SMAD7 agonist and SMAD3 antagonist both improved adhesion formation during flexor tendon healing, and decreased the expressions of collagen III, Mmp9, and SCX, while increasing Mmp2 expression. This study provides a possible theoretical basis for the SMAD7-SMAD3 signal cascade during flexor tendon adhesion healing.

Smad4 Mediated TGF-β/BMP Signaling in Tooth Formation Using Smad4 Conditional Knockout Mouse (치아 발생과정에서 Smad4의 역할)

  • Yoon, Chi-Young;Baek, Jin-A;Cho, Eui-Sic;Ko, Seung-O
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.2
    • /
    • pp.73-81
    • /
    • 2013
  • Purpose: Smad4 is a central mediator for transforming growth factor-${\beta}$/bone morphogenetic protein ($TGF-{\beta}/BMP$) signals, which are involved in regulating cranial neural crest cell formation, migration, proliferation, and fate determination. Accumulated evidences indicate that $TGF-{\beta}/BMP$ signaling plays key roles in the early tooth morphogenesis. However, their roles in the late tooth formation, such as cellular differentiation and matrix formation are not clearly understood. The objective of this study is to understand the roles of Smad4 in vivo during enamel and dentin formation through tissue-specific inactivation of Smad4. Methods: We generated and analyzed mice with dental epithelium-specific inactivation of the Smad4 gene (K14-Cre:$Smad4^{fl/fl}$) and dental mesenchyme-specific inactivation of Smad4 gene (Osr2Ires-Cre:$Smad4^{fl/fl}$). Results: In the tooth germs of K14-Cre:$Smad4^{fl/fl}$, ameloblast differentiation was not detectable in inner enamel epithelial cells, however, dentin-like structure was formed in dental mesenchymal cells. In the tooth germs of Osr2Ires-Cre:$Smad4^{fl/fl}$ mice, ameloblasts were normally differentiated from inner enamel epithelial cells. Interestingly, we found that bone-like structures, with cellular inclusion, were formed in the dentin region of Osr2Ires-Cre:$Smad4^{fl/fl}$ mice. Conclusion: Taken together, our study demonstrates that Smad4 plays a crucial role in regulating ameloblast and odontoblast differentiation, as well as in regulating epithelial-mesenchymal interactions during tooth development.

Bone Morphogenetic Protein 2-induced MAPKs Activation Is Independent of the Smad1/5 Activation

  • Jun, Ji-Hae;Ryoo, Hyun-Mo;Woo, Kyung-Mi;Kim, Gwan-Shik;Baek, Jeong-Hwa
    • International Journal of Oral Biology
    • /
    • v.34 no.2
    • /
    • pp.115-121
    • /
    • 2009
  • Bone morphogenetic protein (BMP) 2 is a potent osteogenic factor. Although both Smad1/5 and mitogenactivated protein kinases (MAPKs) are activated by BMP2, the hierarchical relationship between them is unclear. In this study, we examined if BMP2-stimulated MAPK activation is regulated by Smad1/5 or vice versa. When C2C12 cells were treated with BMP2, the activation of extracellular signal-regulated kinase (ERK), p38 MAPK and c-Jun-N-terminal kinase was evident within 5 min. The knockdown of both Smad1 and Smad5 by small interfering RNA did not affect the activation of these MAPKs. In addition, neither the overexpression of Smad1 nor Smad5 induced ERK activation. When ERK activation was induced by constitutively active MEK1 expression, the protein level and activation of Smad1 increased. Furthermore, the inhibition of constitutively active BMP receptor type IB-induced ERK activation significantly suppressed Smad1 activation. These results indicate that Smad1/5 activation is not necessary for BMP2-induced MAPK activation and also that ERK positively regulates Smad1 activation.

Zinc upregulates bone-specific transcription factor Runx2 expression via BMP-2 signaling and Smad-1 phosphorylation in osteoblasts

  • Cho, Young-Eun;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.51 no.1
    • /
    • pp.23-30
    • /
    • 2018
  • Purpose: Runx2 (runt-related transcription factor 2), a bone-specific transcription factor, is a key regulator of osteoblast differentiation and its expression is induced by the activation of BMP-2 signaling. This study examined whether zinc modulates BMP-2 signaling and therefore stimulates Runx2 and osteoblast differentiation gene expression. Methods: Two osteoblastic MC3T3-E1 cell lines (subclones 4 as a high osteoblast differentiation and subclone 24 as a low osteoblastic differentiation) were cultured in an osteogenic medium (OSM) as the normal control, Zn-($1{\mu}M$ Zn) or Zn+($15{\mu}M$ Zn) for 24 h. The genes and proteins for BMP-2 signaling (BMP-2, Smad-1/p-Smad-1), transcription factors (Runx2, osterix), and osteoblast differentiation marker proteins were assessed. Results: In both cell lines, BMP-2 mRAN and protein expression and extracellular BMP-2 secretion all decreased in Zn-. The expression of Smad-1 (downstream regulator of BMP-2 signaling) and p-Smad-1 (phosphorylated Smad-1) also downregulated in Zn-. Furthermore, the expression of the bone-specific transcription factors, Runx2 and osterix, decreased in Zn-, which might be due to the decreased BMP-2 expression and Smad-1 activation (p-Smad-1) by Zn-, because Runx2 and osterix both are downstream in BMP-2 signaling. Bone marker gene expression, such as alkaline phosphatase (ALP), collagen type I (COLI), osteocalcin, and osteopontin were also downregulated in Zn-. Conclusion: The results suggest that a zinc deficiency in osteoblasts suppresses the BMP-2 signaling pathway via the suppression of Smad-1 activation, and this suppressed BMP-2 signaling can cause poor osteoblast differentiation.

Association between SMAD2 Gene and Serum Liver Enzyme Levels in the Korean Population

  • Ahn, Hyo-Jun;Sull, Jae Woong;Eom, Yong-Bin
    • Biomedical Science Letters
    • /
    • v.19 no.2
    • /
    • pp.124-131
    • /
    • 2013
  • Genome-wide association studies (GWAS) have identified a number of common variants associated with serum liver enzyme homeostasis in population. In the previous study, single nucleotide polymorphisms (SNPs) in several genes have been reported to be associated with serum liver enzyme levels in European population. We aimed to confirm whether the genetic variation of SMAD2 (SMAD family member 2) gene influence the serum liver enzyme levels in Korean population. We genotyped variants in or near SMAD2 in a population-based sample including 994 unrelated Korean adult. Here, we performed association analysis to elucidate the possible relations of genetic polymorphisms in SMAD2 gene with serum liver enzyme levels. By examining genotype data of a total of 944 subjects in 5 hospital health promotion center, we discovered the SMAD2 gene polymorphisms are associated with serum liver enzyme levels. The common and highest significant polymorphism was rs17736760 (${\beta}$=3.51, P=5.31E-07) with glutamic oxaloacetic transferase (GOT), rs17736760 (${\beta}$=5.99, P=1.25E-05) with glutamic pyruvate transaminase (GPT), and rs17736760 (${\beta}$=15.68, P=9.93E-07) with gamma glutamyl transferase (GGT) in all group. Furthermore, the SNP rs17736760 was consistently associated with GOT (${\beta}$=5.25, P=1.72E-06), GPT (${\beta}$=9.97, P=1.16E-05), GGT (${\beta}$=26.13, P=3.43E-06) in men group. Consequently, we found statistically significant SNP in SMAD2 gene that are associated with serum levels of GOT, GPT, and GGT. In addition, these results suggest that the individuals with the minor alleles of the SNP in the SMAD2 gene may be more elevated serum liver enzyme levels in the Korean population.

Nectandrin A Enhances the BMP-Induced Osteoblastic Differentiation and Mineralization by Activation of p38 MAPK-Smad Signaling Pathway

  • Kim, Do Yeon;Kim, Go Woon;Chung, Sung Hyun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.5
    • /
    • pp.447-453
    • /
    • 2013
  • Osteoblastic activity of nectandrin A was examined in C2C12 cells. Nectandrin A enhances the BMP-induced osteoblastic differentiation and mineralization, manifested by the up-regulation of differentiation markers (alkaline phosphatase and osteogenic genes) and increased calcium contents. In C2C12 cells co-transfected with expression vector encoding Smad4 and Id1-Luc reporter, nectandrin A increased Id1 luciferase activity in a concentration-dependent manner, when compared to that in BMP-2 treated cells, indicating that Smad signaling pathway is associated with nectandrin A-enhanced osteoblastic differentiation in C2C12 cells. In addition, nectandrin A activated p38 mitogen-activated protein kinase (MAPK) in time- and concentration-dependent manners, and phosphorylated form of pSmad1/5/8 and alkaline phosphatase activity were both decreased when the cells were pretreated with SB203580, a p38 MAPK inhibitor, suggesting that p38 MAPK might be an upstream kinase for Smad signaling pathway. Taken together, nectandrin A enhances the BMP-induced osteoblastic differentiation and mineralization of C2C12 cells via activation of p38 MAPK-Smad signaling pathway, and it has a therapeutic potential for osteoporosis by promoting bone formation.

Histological Changes of Cervical Disc Tissue in Patients with Degenerative Ossification

  • Xiong, Yang;Yang, Ying-Li;Gao, Yu-Shan;Wang, Xiu-Mei;Yu, Xing
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.2
    • /
    • pp.186-195
    • /
    • 2022
  • Objective : To explore the histological feature of the cervical disc degeneration in patients with degenerative ossification (DO) and its potential mechanisms. Methods : A total of 96 surgical segments, from cervical disc degenerative disease patients with surgical treatment, were divided into ossification group (group O, n=46) and non-ossification group (group NO, n=50) based on preoperative radiological exams. Samples of disc tissues and osteophytes were harvested during the decompression operation. The hematoxylin-eosin staining, Masson trichrome staining and Safranin O-fast green staining were used to compare the histological differences between the two groups. And the distribution and content of transforming growth factor (TGF)-β1, p-Smad2 and p-Smad3 between the two groups were compared by a semi-quantitative immunohistochemistry (IHC) method. Results : For all the disc tissues, the content of disc cells and collagen fibers decreased gradually from the outer annulus fibrosus (OAF) to the central nucleus pulposus (NP). Compared with group NO, the number of disc cells in group O increased significantly. But for proteoglycan in the inner annulus fibrosus (IAF) and NP, the content in group O decreased significantly. IHC analysis showed that TGF-β1, p-Smad2, and p-Smad3 were detected in all tissues. For group O, the content of TGF-β1 in the OAF and NP was significantly higher than that in group NO. For p-Smad2 in IAF and p-Smad3 in OAF, the content in group O were significantly higher than group NO. Conclusion : Histologically, cervical disc degeneration in patients with DO is more severe than that without DO. Local higher content of TGF-β1, p-Smad2, and p-Smad3 are involved in the disc degeneration with DO. Further studies with multi-approach analyses are needed to better understand the role of TGF-β/Smads signaling pathway in the disc degeneration with DO.

Epimedium koreanum Nakai Water Extract Regulates Hepatic Stellate Cells Activation through Inhibition of Smad Signaling Pathway (음양곽(淫羊藿) 열수 추출물의 Smad 신호 억제를 통한 간성상세포의 활성 조절)

  • Jung, Ji Yun;Min, Byung-Gu;Park, Chung A;Byun, Sung Hui;Cho, Il Je;Kim, Sang Chan
    • Herbal Formula Science
    • /
    • v.26 no.3
    • /
    • pp.183-193
    • /
    • 2018
  • Objectives : In Traditional Korean Medicine, Epimedium koreanum Nakai has diverse pharmacological activities to treat impotence, forgetfulness, cataract and exophthalmos. Present study investigated anti-fibrogenic effects of E. koreanum water extract (EKE) in hepatic stellate cells (HSCs). Methods : To study anti-fibrogenic effects of EKE, LX-2 cells, a human immortalized HSCs, were pre-treated with $3-300{\mu}g/mL$ of EKE, and then subsequently exposed to 5 ng/mL of transforming growth $factor-{\beta}1$ ($TGF-{\beta}1$). Expression level of ${\alpha}-smooth$ muscle actin was determined by immunoblot analysis. Phosphorylation of Smad, transactivation of Smad, and expression of plasminogen activator inhibitor-1 (PAI-1) were monitored to investigate the effect of EKE on $TGF-{\beta}1-mediated$ signaling pathway. Results : Up to $100{\mu}g/mL$, EKE did not show any cytotoxicity on LX-2 cells. Pre-treatment of EKE ($100{\mu}g/mL$) significantly inhibited ${\alpha}-smooth$ muscle actin expression induced by $TGF-{\beta}1$. In addition, EKE significantly decreased Smad2 and Smad3 phosphorylations, Smad binding element-driven luciferase activity and PAI-1 expression by $TGF-{\beta}1$. Of three flavonoid compounds found in EKE, only quercertin ($30{\mu}M$) attenuated $TGF-{\beta}1-mediated$ PAI-1 expression. Conclusion : These results suggest that EKE has an ability to suppress fibrogenic process in HSCs via inhibition of $TGF-{\beta}1/Smad$ signaling pathway.

SUMO Proteins are not Involved in TGF-${\beta}1$-induced, Smad3/4-mediated Germline ${\alpha}$ Transcription, but PIASy Suppresses it in CH12F3-2A B Cells

  • Lee, Sang-Hoon;Kim, Pyeung-Hyeun;Oh, Sang-Muk;Park, Jung-Hwan;Yoo, Yung-Choon;Lee, Junglim;Park, Seok-Rae
    • IMMUNE NETWORK
    • /
    • v.14 no.6
    • /
    • pp.321-327
    • /
    • 2014
  • TGF-${\beta}$ induces IgA class switching by B cells. We previously reported that Smad3 and Smad4, pivotal TGF-${\beta}$ signal-transducing transcription factors, mediate germline (GL) ${\alpha}$ transcription induced by TGF-${\beta}1$, resulting in IgA switching by mouse B cells. Post-translational sumoylation of Smad3 and Smad4 regulates TGF-${\beta}$-induced transcriptional activation in certain cell types. In the present study, we investigated the effect of sumoylation on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ transcription and IgA switching by mouse B cell line, CH12F3-2A. Overexpression of small ubiquitin-like modifier (SUMO)-1, SUMO-2 or SUMO-3 did not affect TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity, expression of endogenous $GL{\alpha}$ transcripts, surface IgA expression, and IgA production. Next, we tested the effect of the E3 ligase PIASy on TGF-${\beta}1$-induced, Smad3/4-mediated $GL{\alpha}$ promoter activity. We found that PIASy overexpression suppresses the $GL{\alpha}$ promoter activity in cooperation with histone deacetylase 1. Taken together, these results suggest that SUMO itself does not affect regulation of $GL{\alpha}$ transcription and IgA switching induced by TGF-${\beta}1$/Smad3/4, while PIASy acts as a repressor.