• Title/Summary/Keyword: SMA 형상기억합금

Search Result 177, Processing Time 0.065 seconds

Prototype Intelligent Thermal Mountain Climbing Jacket Embedded with a Two Way Shape Memory Alloy (이방향 형상기업합금을 이용한 지능형 보온성 등산용 자켓의 프로토타입 개발)

  • Lee, Ji-Yeon;Shin, Yeon-Wook;Kim, Hee-Jung;Baek, Bum-Ki;Kim, Eun-Ae
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.34 no.1
    • /
    • pp.92-101
    • /
    • 2010
  • This study reports on the development of intelligent clothing using a shape memory alloy (SMA) that forms a still air layer and provides thermal insulation depending on the environment temperature. SMA springs were prepared with Nitinol and have an original length of 6mm and a latent length of 20mm with a response temperature of $24.5^{\circ}C$. Hysteresis was evaluated at a temperature between $0^{\circ}C$ and $40^{\circ}C$. An experimental outdoor jacket that was attached with 30 springs was compared with a commercial jacket in terms of the microclimate temperature, humidity, and comfort properties by human subject tests in the microclimate chamber set at $5{\pm}0.5^{\circ}C$. The results showed that the microclimate temperature of SMA embedded clothing system from the wear trials was higher than the commercial ones during the rest period after exercise, especially on the skin side. In addition the thermal, humidity, and comfort sensations of SMA embedded clothing were better than the commercial ones.

A Study on the Mechanism of the Robot Hand based on the Segment Binary Control (구간분할 바이너리 제어기반 로봇핸드의 메커니즘에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1232-1235
    • /
    • 2005
  • In recent years, as the robot technology is developed the researches on the artificial muscle actuator that enable robot to move dextrously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electroactive polymer. These actuators have the higher energy density than the electromechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper the segmented binary control for reducing the hysteresis of SMA is proposed and the simulation of anthropomorphic robotic hand is performed using ADAMS.

  • PDF

Development of an Actuator using Shape Memory Alloys (형상기억합금을 이용한 액츄에이터 개발)

  • Lee, Jang-Ho;Han, Sang-Yong;Cho, Tae-Shin;Kim, Young-Chol
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.227-230
    • /
    • 2003
  • There are many practical applization that require motorless actuation. The purpose of the paper is to develop an actuator using the shape memory alloys(SMA) that operates is linear motion. We consider several design specifications as driving force of above 5kgf, driving stroke length 15mm, supply voltage DC 9-l2V and operating time less than 0.5sec etc. Design procedure and experimental results of a mock-up model are Presented. It has been also applied to the door locking system.

  • PDF

A study on Dynamic Characteristics of the Robot Hand Using the Segmented Binary Control (구간분할 바이너리 제어를 이용한 로봇핸드의 동특성에 관한 연구)

  • Jeong Sanghwa;Cha Kyoungrae;Kim Hyunuk;Choi Sukbong;Kim Gwangho;Park Juneho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.144-149
    • /
    • 2005
  • In recent years, as the robot technology is developed the researches on the artificial muscle actuator that enable robot to move dextrously like biological organ become active. The widely used materials for artificial muscle are the shape memory alloy and the electroactive polymer. These actuators have the higher energy density than the electromechanical actuator such as motor. However, there are some drawbacks for actuator. SMA has the hysterical dynamic characteristics. In this paper the segmented binary control for reducing the hysteresis of SMA is proposed and the simulation of anthropomorphic robotic hand is performed using ADAMS.

  • PDF

A Study on the Fabrication of Micro Shape Memory Alloy Actuator for Smart Catheter (지능형 내시경용 초소형 형상기억합금 엑츄에이터의 제작에 관한 연구)

  • Kim, Min-Sung;Park, Doo-Hwan;Park, Hyun-Chol;Lee, Oh-Keol;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2001.07d
    • /
    • pp.2411-2413
    • /
    • 2001
  • A SMA actuator fabricated in this paper generates the large force and it's structure is very simple. The SMA actuator was fabricated by small size with diameter of 9mm and length of 27mm and also it's actuations toward all the directions can be acquired because of three springs which was fabricated with diameter of 2.4mm and 28 turns. We showed into applicability to smart catheter by analysing accurately the dynamic characteristics such as heading angle, force, displacement.

  • PDF

Characterization System of Shape Memory Alloy Springs for Endoscope (내시경용 형상기억합금 스프링의 성능평가 시스템)

  • Kim, Myung-Soon;Na, Seung-Woo;Lee, Sang-Hoon;Lee, Seung-Ki
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.05
    • /
    • pp.215-220
    • /
    • 1996
  • Experimental set-up for the characterization of Shape Memory Alloys springs which are applicacable to endoscope has been implemented. Fundamental properties of SMA springs were measured by iso-thermal test iso-metric test, iso-tonic test and the relationship between stress and strain, temperature and generated force, displacement and temperature could be characterized experimentally. The implemented experimental set-up and characterization method can be exploited for the design of SMA springs and evaluation of actuators used in endoscope.

  • PDF

On-orbit Micro-vibration Isolation Performance Verification for Spaceborne Cryocooler Passive Vibration Isolator Using SMA Mesh Washer (SMA 메쉬 와셔를 적용한 우주용 냉각기 수동형 진동절연기의 궤도 미소진동 절연성능 검증)

  • Kwon, Seong-Cheol;Jeon, Su-Hyeon;Oh, Hyun-Ung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.24-32
    • /
    • 2015
  • Pulse tube-type spaceborne cryocooler is widely used to cool down the infrared sensor of observation satellites. However, such cryocooler also generates micro-vibration which is the one of main sources to seriously affect the image quality during its on-orbit operation. Therefore, to comply with the mission requirement of high resolution observation satellite, additional technical efforts have been required. In this study, we proposed a spaceborne cryocooler passive vibration isolator using SMA mesh washer, which guarantees the structural safety of both the micro-vibration disturbance source and itself under harsh launch vibration loads without an additional holding mechanism and the micro-vibration isolation performance on orbit environment. To verify the micro-vibration isolation performance of the proposed vibration isolator, we performed the micro-vibration isolation measurement test using the dedicated micro-vibration measurement device proposed in this study.

Effect of interface bonding strength on the recovery force of SMA reinforced polymer matrix smart composites (형상기억합금 선재가 삽입된 폴리머기지 능동복합재료의 회복력에 미치는 계면 접합강도의 영향)

  • 김희연;김경섭;홍순형
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.18-21
    • /
    • 2003
  • The effect of interface bonding strength on the recovery force of SMA wire reinforced polymer matrix composites was investigated by pullout test. Firstly, the recovery forces and transformation temperatures of various prestrained SMA wires were measured and 5% prestrained SMA wires were prepared for the reinforcements of composites. EPDM incorporated with 20vol% silicon carbide particles(SiCp) of 6, 12, $60{mutextrm{m}}$ size were used as matrix. Pullout test results showed that the interface bonding strength increased when the SiCp size decreased due to the increase of elastic modulus of matrix. Cyclic test of composites was performed through control of DC current at the constant displacement mode. The abrupt decrease of recovery force during cycle test at high current was occurred by thermal degradation of matrix. This was in good agreement with temperature related in the thermal degradation of matrix. The hysteresis of recovery force with respect to the temperature was compared between wire and composite and the hysterisis of composites was smaller than the wire due to less thermal conduction.

  • PDF

Experimental Study on Shear Retrofitting of Concrete Columns Using Iron-Based Shape Memory Alloy (철계 형상기억합금을 이용한 콘크리트 기둥의 전단보강 실험연구)

  • Jung, Donghuk;Jeong, Saebyeok;Choi, Jae-Hee;Kim, Geunoh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.41-46
    • /
    • 2024
  • The current study investigates the seismic performance of shear-dominant RC columns retrofitted with iron-based shape memory alloy (Fe SMA). Three RC columns with insufficient transverse reinforcement were designed and fabricated for lateral cyclic loading tests. Before testing, two specimens were externally confined with carbon fiber-reinforced polymer (CFRP) sheets and self-prestressed Fe SMA strips. The test results showed that both CFRP and Fe SMA performed well in preventing severe shear failure exhibited by the unretrofitted control specimen. Furthermore, the two retrofitted specimens showed ductile flexural responses up to the drift ratios of ±8%. In terms of damage control, however, the Fe SMA confinement was superior to CFRP confinement in that the spalling of concrete was much less and that the rupture of confinement did not occur.

Fracture Characteristic of TiNi/A16061 Share Memory Alloy Composite using Acoustic Emission Technique (AE 기법을 이용한 TiNi/A16061 형상기억복합재료의 파괴특성평가)

  • Lee, Jin-Kyung;Park, Young-Chul;Ku, Hoo-Taek;Park, Dong-Sung;Lee, Kyu-Chang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.275-282
    • /
    • 2002
  • Tensile residual stress happen by difference of coefficients of thermal expansion between fiber and matrix is one of the serious problems in metal matrix composite(MMC). In this study, TiNi fiber was used to solve the tensile residual stress as the reinforced material. TiNi fiber improves the tensile strength of composite by occurring compressive residual stress in matrix using shape memory effect of it. Pre-strain was added to generate compressive residual stress inside TiNi/A16061 composite. It was also evaluated the effect of compressive residual stress corresponding to pre-strains variation. AE technique was used to clarify the microscopic damage behavior at high temperature and the effect of pre-strain difference of TiNi/A16061 shape memory alloy composite.