• Title/Summary/Keyword: SMA (shape memory alloy)

Search Result 298, Processing Time 0.028 seconds

Design of HDD Load/Unload Suspension Using Shape Memory Alloy (형상기억합금을 이용한 HDD Load/Unload 서스펜션의 설계)

  • Lim, Soo-Cheol;Park, Young-Pil;Park, No-Cheol;Choi, Seung-Bok
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.1
    • /
    • pp.71-78
    • /
    • 2006
  • In this work, we propose a new type of HDD Load/Unload(L/UL) suspension featuring shape memory alloy(SMA). The mechanical and thermal properties of the SMA film with respect to the material phase states are experimentally estimated and the SMA film is carefully integrated to the suspension. In order to obtain the desirable dynamic characteristics of the suspension during L/UL process, the design parameters of the SMA film such as geometric properties are determined by considering the vibration modes of the suspension related to the L/UL performance. After analyzing the modal characteristics of the proposed suspension, L/UL performance is evaluated through L/UL simulation by observing the vibration motion and minimum flying height of the slider during L/UL process.

  • PDF

Thermal Fatigue Degradation Behavior of Ni-Ti Shape Memory Alloy (Ti-Ni 형상기억합금의 열피로열화 거동)

  • 박영철;조용배;오세욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.11
    • /
    • pp.2913-2921
    • /
    • 1994
  • In SMA(shape memory alloy), the degradation by fatigue is one of the most important problems to be overcome, when SMA is used for robot-actuator material. The actuator is operated repeatitively for long time and its repeating operation develops the fatigue degradation of SMA. The fatigue degradation changes the transformation temperature and deformation behavior and results in inaccurate operation control of robot. Accordingly, the changing behavior of transformation temperature and deformation which results from repeating operation is to be investigated in advance and the scheme to resolve those problems have to be made for the design of actuator. In this study, the fatigue tests were carried out on SMA specimens prepared to have different condition of aging time and pre-strain with the direct-current heating-cooling method, which was a general method of operation in robot actuators. The behavior of transformation temperature and deformation were examined and analyzed in each specimen and the study was performed to establish the optimistic manufacturing condition of SMA against the fatigue degradation.

A Study on Driving Mechanism of Robot Hand Driven by SMA based on Segmented Binary Control (구간분할 바이너리 제어기반 SMA 구동에 의한 로봇핸드의 운동 메커니즘에 관한 연구)

  • Jeong, Sang-Hwa;Park, Jun-Ho;Cha, Kyoung-Rae;Ryu, Shin-Ho;Kim, Gwang-Ho
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.14-20
    • /
    • 2006
  • In recent year, as the robot technology is developed, the researches on the artificial muscle actuator that enables robot to move dexterously like biological organ become active. Actuators are key technologies underpinning robotics. Breakthroughs in actuator technology, particular in terms of power-to-weight ratio, or energy-density, will have significant impacts upon the design and control of robotic system. In this paper, a new approach to design and control of shape memory alloy(SMA) actuator is presented to drive the robot hand. SMA wire is divided into many segments and their thermal states of the SMA are controlled individually in a binary manner. This control manner will reduce the hysteresis that the SMA material has and it becomes the fundamental technology to develop the anthropomorphic robot hand. In this paper, the mechanism In the digital step motor of the shape memory alloy that is driven by the segmented binary control, which is a new control technique, is studied. This SMA digital step actuator applies for the robot hand and the driving mechanism of the robot hand is investigated.

ECM Characteristics of Ni-Ti Shape Memory Alloy (Ni-Ti 형상기억합금의 전해가공의 특성)

  • 김동환;강지훈;박규열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.955-958
    • /
    • 2000
  • In this paper, the electro-chemical-machining characteristics of Ni-Ti Shape Memory Alloy(SMA) was investigated. From the experimental results, the optimal electro chemical machining conditions for satisfying the machining quality(fine surface & high recovery stress)might be confirmed. And it was concluded that optical electro chemical condition for Ni-Ti SMA could be obtained at approximately 100% current efficiency and high frequency pulse current.

  • PDF

Stability augmentation of helicopter rotor blades using passive damping of shape memory alloys

  • Yun, Chul-Yong;Kim, Dae-Sung;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.1
    • /
    • pp.137-147
    • /
    • 2006
  • In this study, shape memory alloy damper with characteristics of pseudoelastic hysteresis for helicopter rotor blades are investigated. SMAs can be available in damping augmentation of vibrating structures. SMAs show large hysteresis in the process of pseudoelastic austenite-martensite phase transformation which takes place while subjected to loading above the austenite finish temperature. Since SMAs display pseudoelastic hysteresis behavior over large strain ranges, a significant amount of energy dissipation is possible. A damper can be designed with SMA wires prestressed to a baseline level somewhere in the middle of the pseudoelastic stress range. An experimental study of the effects of pre-strain and cyclic strain amplitude as well as frequency on the damping behavior of pseudoelastic shape memory alloy wires are performed. The effects of the shape memory alloy damper on aeroelastic and ground resonance stability of helicopter are studied. In aeroelastic stability, the dynamic characteristics of blades related to pitch angle and the amplitude of lag motion for the rotor equipped with SMA damper were examined. The performance of SMA damper on ground resonance instability are presented through the frequencies and modal damping with respect to rotating speed.

Development of Strength Analysis Modules for TiNi/Al 6061 Shape Memory Alloy (TiNi/Al 6061 형상기억 복합재료의 강도해석 모듈 개발)

  • 이동화;박영철;박동성;이규창
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.692-696
    • /
    • 2001
  • Thermo-mechanical behavior and mechanical properties of intelligent polymer matrix composite with SMA fiber are experimentally studied. It is found that increments of compressive thermal strain is observed as the pre-strain and TiNi volume fraction increase. The smartness of the SMA is given due to the shape memory effect of the TiNi fiber which generates compressive residual stress in the matrix material when heated after being prestrained. In the paper, alloy is based on the general purpose commercial code ANSYS. And for the purpose of easy and fast user's analysis, it is developed the Graphical User Interface by using Tcl/Tk language.

  • PDF

Prediction of Shape Recovery for Ni-Ti SMA Wire after Drawing (Ni-Ti 형상기억합금 선재의 인발 공정 후 형상회복 예측에 관한 연구)

  • Kim, S.H.;Lee, K.H.;Lee, S.B.;Yeom, J.T.;Park, C.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.22 no.8
    • /
    • pp.470-476
    • /
    • 2013
  • The aim of the current study was to predict shape recovery behavior of Ni-Ti shape memory alloy (SMA) wire after loading-unloading and after wire drawing. The superelasticity of SMA was analyzed by a hyper-elastic model for the Mullins effect using ABAQUS. Firstly, tensile tests and loading-unloading tests of the Ni-Ti SMA wire with a diameter 1.0 mm were performed using an MTS servo-hydraulic tester. The parameters for the Mullins effect were computed by ABAQUS based on curve-fitting of the loading-unloading test data. The proposed FE-model predicted the shape recovery of Ni-Ti SMA after wire drawing. Finally, the effectiveness of the model was verified by drawing experiments. The wire drawing experiments using the Ni-Ti SMA were conducted on a drawing machine(1ton, 50mm/s). In order to evaluate the shape recovery of Ni-Ti SMA, the drawn wires are annealed for 30min at $450^{\circ}C$.

Modified sigmoid based model and experimental analysis of shape memory alloy spring as variable stiffness actuator

  • Sul, Bhagoji B.;Dhanalakshmi, K.
    • Smart Structures and Systems
    • /
    • v.24 no.3
    • /
    • pp.361-377
    • /
    • 2019
  • The stiffness of shape memory alloy (SMA) spring while in actuation is represented by an empirical model that is derived from the logistic differential equation. This model correlates the stiffness to the alloy temperature and the functionality of SMA spring as active variable stiffness actuator (VSA) is analyzed based on factors that are the input conditions (activation current, duty cycle and excitation frequency) and operating conditions (pre-stress and mechanical connection). The model parameters are estimated by adopting the nonlinear least square method, henceforth, the model is validated experimentally. The average correlation factor of 0.95 between the model response and experimental results validates the proposed model. In furtherance, the justification is augmented from the comparison with existing stiffness models (logistic curve model and polynomial model). The important distinction from several observations regarding the comparison of the model prediction with the experimental states that it is more superior, flexible and adaptable than the existing. The nature of stiffness variation in the SMA spring is assessed also from the Dynamic Mechanical Thermal Analysis (DMTA), which as well proves the proposal. This model advances the ability to use SMA integrated mechanism for enhanced variable stiffness actuation. The investigation proves that the stiffness of SMA spring may be altered under controlled conditions.

A Study on Cyclic Deformation and Fatigue Phenomenon of Shape Memory Alloy (형상기억합금의 반복변형특성과 피로현상에 관한 연구)

  • 박영철;오세욱;허정원;이명렬
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.1
    • /
    • pp.87-95
    • /
    • 1992
  • Recently, the robot actuator worked by the driving recovery-force of the thermo elastic martensitic transformation of shape memory alloys(SMA) has been studied. In general, such a SMA actuator necessitates a number of cyclic repeated motion, so that the investigation of gradual decrease of recovery force with repeated motion cycle as well as the prevention of such a degradation of shape memory effect(SME) are very important for the actual use of a robot actuator. However, such research and discussions about the degradation of SME are very few up to the present. Therefore, in this study, the characteristics of the cyclic deformation and degradation of SME of Ti-Ni alloy would be investigated and discussed in detail by current heat type fatigue tester, which is a newly designed fatigue tester by author. In addition, we will establish a new design concept for robot actuator from these result.

  • PDF