• Title/Summary/Keyword: SMA (shape memory alloy)

Search Result 296, Processing Time 0.028 seconds

Vibration and Position Tracking Control of a Smart Structure Using SMA Actuators (형상기억합금 작동기를 이용한 스마트 구조물의 진동 및 위치 추적제어)

  • Park, N.J.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.155-163
    • /
    • 1996
  • This paper presents vibration and position tracking control of a smart structure using shape memory alloy(SMA) actuators. A governing equation of motion of the proposed structure is obtained via Hamilton's princeple. The dynamic characteristics of the SMA actuator are experimentally identified and incorporated with the governing equation to furnish a control system model. Subsequently, a sliding mode controller which has inherent robustness to external disturbances is formulated on the basis of the sliding mode conplacement, and also for the position tracking control of desired trajectories with low-frequency sine and square waves.

  • PDF

Unique local deformations of the superelastic SMA rods during stress-relaxation tests

  • Ashiqur Rahman, Muhammad;Rahman Khan, Mujibur
    • Structural Engineering and Mechanics
    • /
    • v.22 no.5
    • /
    • pp.563-574
    • /
    • 2006
  • This paper studies mechanical behavior of the superelastic shape memory alloy (SMA) rods in terms of local deformations and time via tensile loading-unloading cycles for both ends fixed end constraints. Besides the unique stress induced martensitic transformation (SIMT), SMA's time dependent behavior when it is in mixed-phase condition upon loading and unloading, also need careful attention with a view of investigating the local deformation of the structural elements made of the same material. With this perspective, the so-called stress-relaxation tests have been performed to demonstrate and investigate the local strains-total strains relationships with time, particularly, during the forward SIMT. Some remarkable phenomena have been observed pertaining to SIMT, which are absent in traditional materials and those unique phenomena have been explained qualitatively. For example, at the stopped loading conditions the two ends (fixed end and moving end of the tensile testing machine) were in fixed positions. So that there was no axial overall deformation of the specimen but some notable increase in the axial local deformation was shown by the extensometer placed at the middle of the SMA specimen. It should be noted that this peculiar behavior termed as 'inertia driven SIMT' occurs only when the loading was stopped at mixed phase condition. Besides this relaxation test for the SMA specimens, the same is performed for the mild steel (MS) specimens under similar test conditions. The MS specimens, however, show no unusual increase of local strains during the stress relaxation tests.

Derivation of Numerical Equivalent Model of Vibration Isolator using Pseudoelastic SMA Mesh Washer (의탄성 형상기억합금 메쉬 와셔가 적용된 수동형 진동절연기의 수학적 등가모델 도출)

  • Kwon, Sung-Cheol;Jeon, Su-Hyeon;Oh, Hyun-Ung
    • Journal of Aerospace System Engineering
    • /
    • v.8 no.3
    • /
    • pp.6-13
    • /
    • 2014
  • A passive launch and on-orbit vibration isolator using SMA(Shape Memory Alloy) washer for both the structural safety of the micro-vibration source by attenuating the transmitted force under launch loads and the micro-vibration isolation during their on-orbit operation has been proposed, which does not require the additional launch locking mechanism. To measure the characteristics of SMA mesh washer, we performed compressive loading tests with a single SMA mesh washer and a vibration isolator using SMA mesh washer. The numerical equivalent model of vibration isolator using SMA mesh washer composed of two spring and viscous damping elements has been verified that both stiffness and viscous damping varied with respect to compressed deformations. In addition, the effectiveness of launch loads and micro-vibration reduction has been investigated through the dynamic characteristics measurement test of cooler assembly combined with passive vibration isolator.

Flexural Behavior of Concrete Beams Reinforced with Fe based Shape Memory Alloy Bar (철계-형상기억합금 바로 제작된 콘크리트 보의 휨 거동)

  • Hong, Ki-Nam;Yeon, Yeong-Mo;Ji, Sang-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.67-76
    • /
    • 2020
  • This paper reports an experimental study to evaluate the flexural behavior of concrete beams reinforced using Fe based shape memory alloy (Fe-SMA) bars. For the experiment, a concrete beam of 200mm×300mm×2,200mm was produced, and a 4% pre-strained Fe-SMA bar was used as a tensile reinforcement. As experimental variables, type of tensile reinforcement (SD400, Fe-SMA), reinforcement ratio (0.2, 0.39, 0.59, 0.78), activation of Fe-SMA (activation, non-activation), and joint method of Fe-SMA bar (Continuous, welding, coupler) were considered. The electric resistance heating method was used to activate the Fe-SMA bar, and a current of 5A/㎟ was supplied until the specimen reached 160℃. After the upward displacement of the specimen due to the camber effect was stabilized, a three-point flexural loading experiment was performed using an actuator of 2,000 kN capacity. As a result of the experiment, it was found that the upward displacement occurred due to the camber effect as the Fe-SMA bar was activated. The specimen that activated the Fe-SMA bar had an initial crack at a higher load than the specimen that did not activate it. However, as with general prestressed concrete, the effect of the prestress by Fe-SMA activation on the ultimate state of the beam was insignificant.

Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS): an engineering solution for practical aseismic isolation with advanced materials

  • Narjabadifam, Peyman;Noori, Mohammad;Cardone, Donatello;Eradat, Rasa;Kiani, Mehrdad
    • Smart Structures and Systems
    • /
    • v.26 no.1
    • /
    • pp.89-102
    • /
    • 2020
  • Shape memory alloy (SMA)-based Superelasticity-assisted Slider (SSS) is proposed as an engineering solution to practically exploit the well-accepted advantages of both sliding isolation and SMA-based recentering. Self-centering capability in SSS is provided by austenitic SMA cables (or wire ropes), recently attracting a lot of interest and attention in earthquake engineering and seismic isolation. The cables are arranged in various novel and conventional configurations to make SSS versatile for aseismic design and retrofit of structures. All the configurations are detailed with thorough technical drawings. It is shown that SSS is applicable without the need for Isolation Units (IUs). IUs, at the same time, are devised for industrialized applications. The proof-of-concept study is carried out through the examination of mechanical behavior in all the alternative configurations. Force-displacement relations are determined. Isolation capabilities are predicted based on the decreases in seismic demands, estimated by the increases in effective periods and equivalent damping ratios. Restoring forces normalized relative to resisting forces are assessed as the criteria for self-centering capabilities. Lengths of SMA cables required in each configuration are calculated to assess the cost and practicality. Practical implementation is realized by setting up a small-scale IU. The effectiveness of SSS under seismic actions is evaluated using an innovative computer model and compared to those of well-known Isolation Systems (ISs) protecting a reference building. Comparisons show that SSS seems to be an effective IS and suitable for earthquake protection of both structural and non-structural elements. Further research aimed at additional validation of the system are outlined.

형상기억합금 스프링을 이용한 2방향 BENDING 액츄에이터의 제작

  • 김명순;이승기;이상훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1071-1074
    • /
    • 1995
  • This paper proposes two directional bending actator using three link, two shape memory alloys(SMA) of coil-type springs and two guide wires. By the heating of two SMA springs sequentially, the bending and stretching of the actuator is possible. Bending angle, force and repeated bending motion of actuator were measured and characterized. The performance of the actuator has been characterized for the possible application for catheter.

  • PDF

Modeling and control of a flexible continuum module actuated by embedded shape memory alloys

  • Hadi, Alireza;Akbari, Hossein
    • Smart Structures and Systems
    • /
    • v.18 no.4
    • /
    • pp.663-682
    • /
    • 2016
  • Continuum manipulators as a kind of mechanical arms are useful tools in special robotic applications. In medical applications, like colonoscopy, a maneuverable thin and flexible manipulator is required. This research is focused on developing a basic module for such an application using shape memory alloys (SMA). In the structure of the module three wires of SMA are uniformly distributed and attached to the circumference of a flexible tube. By activating wires, individually or together, different rotation regimes are provided. SMA model is used based on Brinson work. The SMA model is combined to model of flexible tube to provide a composite model of the module. Simulating the model in Matlab provided a platform to be used to develop controller. Complex and nonlinear behavior of SMA make the control problem hard especially when a few SMA actuators are active simultaneously. In this paper, position control of the two degree of freedom module is under focus. An experimental control strategy is developed to regulate a desired position in the module. The simulation results present a reasonable performance of the controller. Moreover, the results are verified through experiments and show that the continuum module of this paper would be used in real modular manipulators.

Seismic performance of concrete frames reinforced with superelastic shape memory alloys

  • Youssef, M.A.;Elfeki, M.A.
    • Smart Structures and Systems
    • /
    • v.9 no.4
    • /
    • pp.313-333
    • /
    • 2012
  • Reinforced concrete (RC) framed buildings dissipate the seismic energy through yielding of the reinforcing bars. This yielding jeopardizes the serviceability of these buildings as it results in residual lateral deformations. Superelastic Shape Memory Alloys (SMAs) can recover inelastic strains by stress removal. Since SMA is a costly material, this paper defines the required locations of SMA bars in a typical RC frame to optimize its seismic performance in terms of damage scheme and seismic residual deformations. The intensities of five earthquakes causing failure to a typical RC six-storey building are defined and used to evaluate seven SMA design alternatives.

Ni-Ti actuators and genetically optimized compliant ribs for an adaptive wing

  • Mirone, Giuseppe
    • Smart Structures and Systems
    • /
    • v.5 no.6
    • /
    • pp.645-662
    • /
    • 2009
  • Adaptive wings are capable of properly modifying their shape depending on the current aerodynamic conditions, in order to improve the overall performance of a flying vehicle. In this paper is presented the concept design of a small-scale compliant wing rib whose outline may be distorted in order to switch from an aerodynamic profile to another. The distortion loads are induced by shape memory alloy actuators placed within the frame of a wing section whose elastic response is predicted by the matrix method with beam formulation. Genetic optimization is used to find a wing rib structure (corresponding to the first airfoil) able to properly deforms itself when loaded by the SMA-induced forces, becoming as close as possible to the desired target shape (second airfoil). An experimental validation of the design procedure is also carried out with reference to a simplified structure layout.

Experimental Study on Shape Control of Smart Composite Structure with SMA actuators (SMA 작동기를 이용한 스마트 복합재 구조의 형상 제어에 관한 실험적 연구)

  • Yang Seung-Man;Roh Jin-Ho;Han Jae-Hung;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.127-130
    • /
    • 2004
  • In this paper, active shape control of composite structure actuated by shape memory alloy (SMA) wires is presented. Hybrid composite structure was established by attaching SMA actuators on the surfaces of graphite/epoxy composite beam using bolt-joint connectors. SMA actuators were activated by phase transformation, which induced by temperature rising over austenite finish temperatures. In this paper, electrical resistive heating was applied to the hybrid composite structures to activate the SMA actuators. For faster and more accurate shape or deflection control of the hybrid composite structure, PID feedback controller was designed from numerical simulations and experimentally applied to the SMA actuators.

  • PDF