• Title/Summary/Keyword: SM570

Search Result 52, Processing Time 0.024 seconds

Flexural Strength of HSB I-Girder Considering Inelastic Flange Local Buckling (압축플랜지 비탄성 국부좌굴을 고려한 HSB 플레이트거더의 휨강도)

  • Cho, Eun Young;Shin, Dong Ku
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.81-92
    • /
    • 2013
  • The ultimate flexural strength of HSB I-girders, considering the effect of local bucking, was investigated through a series of nonlinear finite element analysis. The girders were selected such that the inelastic local flange buckling or the plastic yielding of compression flanges governs the flexural strength. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web were modeled using thin shell elements and initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was used for steels. After establishing the validity of present FE analysis by comparing FE results with test results published in the literature, the effects of initial imperfection and residual stress on the inelastic flange local buckling behavior were assessed. The ultimate flexural strengths of 60 I-girders with various compression flange slenderness were obtained by FE analysis and compared with those calculated from the KHBDC, AASHTO LRFD and Eurocode 3 provisions. Based on the comparison, the applicability of design equations in these specifications for the flexural strength of I-girder considering flange local buckling was evaluated.

Flexural Strength of HSB Steel Girders Due to Inelastic Lateral-Torsional Buckling - Sections with Slender Web (HSB 강거더의 비탄성 횡비틂좌굴에 의한 휨강도 - 세장 복부판 단면)

  • Cho, Eun-Young;Shin, Dong-Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.217-231
    • /
    • 2012
  • The flexural behavior of HSB I-girder with a non-slender web attributed to inelastic lateral-torsional buckling under uniform bending was investigated using nonlinear finite element analysis of ABAQUS. The girder was assumed to have a compact or noncompact web in order to prevent premature bend-buckling of the web. The unbraced length of the girder was selected so that inelastic lateral-torsional buckling governs the ultimate flexural strength. The compression flange was also assumed to be either compact or noncompact to prevent local buckling of the elastic flange. Both homogeneous sections fabricated from HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. In the FE analysis, the flanges and web of I-girder were modeled as thin shell elements. Initial imperfections and residual stresses were imposed on the FE model. An elasto-plastic strain hardening material was assumed for steel. After establishing the validity of the present FE analysis by comparing FE results with test results in existing literature, the effects of initial imperfection and residual stress on the inelastic lateral-torsional buckling behavior were analyzed. Finite element analysis results for 96 sections demonstrated that the current inelastic strength equations for the compression flange in AASHTO LTFD can be applied to predict the inelastic lateral torsional buckling strength of homogeneous and hybrid HSB I-girders with a non-slender web.

Effect of Sintering Temperature on the Properties of $CaSiO_4:RE^{3+}$(RE=Eu, Sm, Tb, Dy, Ce) Phosphors

  • Go, Bong-Jin;Jo, Min-Jeong;Jo, Sin-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.173-173
    • /
    • 2013
  • 최근에 고효율의 형광체를 개발하고자 무기물 모체에 주입된 희토류 이온의 발광에 대한 연구가 급부상하고 있다. 형광체는 고휘도, 넓은 시청 각도와 저 비용으로 인하여 대형 평판 디스플레이 분야로 그 응용성을 확장하는 플라즈마 디스플레이 패널 제작에 있어서 매우 중요한 물질이다. 현재 적색 형광체로 널리 사용되고 있는 발광 물질은 YBO3:Eu3+ 혹은 (Y,Gd)BO3:Eu3+ 형광체이지만, Eu3+ 이온이 중심대칭의 자리에 위치하기 때문에, Eu3+ 이온의 5D07F1 전이에 의한 주황색의 발광 세기가 5D07F2 전이에 의한 적색의 세기보다 강하여 고품질의 색상을 구현하는데 상당한 어려움이 있다. 이러한 문제점을 해결하기 위하여 새로운 모체 격자를 갖는 적색, 녹색, 청색 형광체 개발에 많은 노력이 집중되고 있다. 본 연구에서는 형광체 합성시 중요한 변수의 하나인 소결 온도가 새로운 다양한 색을 방출하는 형광체 분말 CaSiO4:RE3+ (RE=Eu, Sm, Tb, Dy, Ce)의 특성에 미치는 영향을 조사하였다. CaSiO4:RE3+ (RE=Eu, Sm, Tb, Dy, Ce) 형광체 분말 시료는 초기 물질 CaO (99.99%), SiO2 (99.99%), Eu2O3 (99.99%), Sm2O3 (99.9%), Tb4O7 (99.9%), Dy2O3 (99.9%), CeO2 (99.9%)을 화학적량으로 준비하였다. 볼밀, 건조 작업을 한 후에, 시료를 막자사발에 넣고 분쇄하여 3시간의 하소 공정과 5시간의 소결 공정을 수행하였다. 이때 소결 온도를 변수로 선택하여 각각 $800^{\circ}C$, $900^{\circ}C$, $1,000^{\circ}C$, $1,100^{\circ}C$에서 소결 작업을 수행하여 합성 분말의 구조, 표면, 광학적 특성을 측정하여 소결 온도가 미치는 영향을 조사하였다. Eu3+가 도핑된 CaSiO4 형광체 분말의 경우에, 발광 스펙트럼은 597, 618, 655, 707 nm에서 관측되었으며, 소결 온도가 $800^{\circ}C$에서 $1,100^{\circ}C$로 증가함에 따라 모든 발광 스펙트럼의 세기는 순차적으로 증가함을 나타내었다. Tb3+가 도핑된 CaSiO4 형광체 분말의 경우에 관측된 발광 스펙트럼은 주 피크인 549 nm를 중심으로 하여 세기가 상대적으로 작은 493, 592, 626 nm의 피크들이 관측되었으며, 소결 온도가 증가함에 따라 전반적으로 발광 세기들이 증가하는 경향을 나타내었다. Sm3+가 도핑된 CaSiO4 형광체의 경우에, 발광 스펙트럼은 전형적인 Sm3+이온에 의한 전이 신호들이 605, 570, 653 nm에서 나타났다. 발광 스펙트럼의 세기는 소결 온도에 비례하여 증가하였다. Ce3+가 도핑된 경우에 발광 스펙트럼은 소결 온도에 관계없이 401 nm에서 관측되었으며, 소결 온도에 따라 발광 세기의 변화가 나타났다. 이 실험 결과로 부터, 합성시 적절한 소결 온도의 선택이 고발광 효율의 형광체를 제작하는데 있어서 매우 중요한 요소가 됨을 확인할 수 있었다.

  • PDF

Relationship between Change management and WBS in Evolution and maintenance management of B2B applications (B2B 시스템 운영 하에서 발생된 변경관리의 특성과 WBS의 영향에 관한 연구)

  • Kim, SangSoo;Lee, SeoukJoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.567-570
    • /
    • 2015
  • 기업, 개인에 있어 현재 많은 사람들이 인터넷을 통해 많은 행위를 하고 있다. 이중에 특히나 많은 Needs와 수요가 일어나고 관심 받고 있는 것은 e-Marketplace 이며 이중 구매하는 비중이 상당히 큰 분야가 B2B 구매시스템이다. 이에 해당 관련 시스템을 변경요청의 특성과 WBS에 미치는 영향을 분석하고 이를 개선해야 하는 방법에 대해 사례 분석을 통해 연구하였다.

An Experimental Study on Fatigue Crack Growth Characteristics of Welded High-Strength Steels (용접구조용 고강도강재의 피로균열성장특성에 관한 실험적 연구)

  • Hong, Sung Wook;Kyung, Kab Soo;Nam, Wang Hyun;Jung, Young Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.773-782
    • /
    • 2002
  • In this study, a series of fatigue tests are performed in order to estimate quantitatively the characteristics of fatigue crack growth rate according to the base metal, heat affected zone(HAZ) and weld metal, and the welding method and grade of strength of object steels, and the influence on fatigue crack growth rate according to the direction of welded line for high strength steels of SM570, POSTEN60, and POSTEN80 steels. From the fatigue test results, the retardations of fatigue crack growth rate are remarkable in case that the direction of notch is parallel to welded line than in case that the direction of notch is perpendicular to welded line because of compresive residual stress in weld metal & HAZ. And the characteristics of fatigue crack growth rate according to welding method are that the dispersion of fatigue crack growth rate in case of FCAW method is smaller than that of SAW method. Also, it knows that the fatigue crack growth rate converges in high stress intensity factor range. Meanwhile, fatigue safety is guaranteed sufficiently in the object steels because the fatigue crack growth rate in the range of fatigue crack propagation has a similar tendency to the test results & existing results.

A Study on the Material Characteristics and the Welding Properties of 600MPa Grade Steel (SM 570 TMC) (600MPa급(SM 570 TMC) 강재의 소재 및 용접특성에 관한 연구)

  • Kim, Jong Rak;Kim, Sang Seup;Lee, Chul Ho;Lee, Eun Taik;Beak, Ki Youl
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.773-781
    • /
    • 2008
  • As buildings are becoming taller and longer-spanned, the requirements of high-strength and reliable steels are becoming increasingly stringent. Structural steels, however, acquire significantly different mechanical properties when their strength becomes higher. In this study, the mechanical properties, welding characteristics, and conformities of the 600MPa-grade high-strength steel were tested. The 600MPa-grade steel plates exhibited stable criterion strengthvalues and showed low carbon equivalents (${\mathcal{Ceq}}$) and composition (${\mathcal{Pcm}}$) as well as excellent welding hardness. In the tensile strength test, all the specimens were found to have strengths of over 600MPa. In the Sharphy impact test, the impact-absorbed energy of the V-notch specimens was shown to be 47J at the KS limit. Moreover, the maximum hardness of the specimens in the weld-heat-affected zone at a normal temperature was the same as that before welding. Their weld metal properties, however, were found not to be as good as those of high-strength steel. As such, the details of high-strength steel must be determined.

Flexural Testing of Asymmetric Hybrid Composite Beams Fabricated from High-strength Steels (고강도강재를 적용한 비대칭 하이브리드 합성보의 휨거동 실험)

  • Jun, Su Chan;Han, Kyu Hong;Lee, Cheol Ho;Kim, Jin Won
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.3
    • /
    • pp.217-228
    • /
    • 2017
  • Full-scale flexural testing of asymmetric H-shape hybrid composite beams was conducted in this study. In fabricating hybrid H-shape sections, high strength steels were utilized for the bottom flange while ordinary strength steels were used for the top flange and web. With adding a fully composite floor slab, a total of 8 hybrid composite beam specimens were tested. The primary objective was to develop the asymmetric hybrid H-shape composite beams with maximized flexural efficiency and investigate their flexural behavior. Not all the hybrid composite specimens tested in this study exhibited the plastic moment and reasonable deformability. In the specimens with high-strength bottom flange, the longitudinal shear crack of the slab along the beam axis often preceded the development of beam plastic moment, although the slab was designed as fully composite. The mechanical reason for this unexpected behavior is discussed. It is emphasized that the longitudinal shear strength of composite slab should be checked in designing hybrid composite beams utilizing high strength steels like in this study.

Evaluation of the Applicability of Structural Steels to Cold Regions by the Charpy Impact Test (샤르피 충격시험을 통한 구조용강재의 극한지 적용성 검토)

  • Lee, Chin-Hyung;Shin, Hyun-Seop;Park, Ki-Tae;Yang, Seunng-Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.483-491
    • /
    • 2011
  • The fabrication of steel structural members always involves welding process such as flux cored arc welding. Therefore, for the application of structural steels to cold regions, it is a prerequisite to clarify the service temperature of the welded joints in order to ensure the structural integrity of the welded parts. In this study, the Charpy impact test was conducted to evaluate the service temperature of structural steel weld. The Charpy impact test is a commercial quality control test for steels and other alloys used in the construction of metallic structures. The test allows the material properties for service conditions to be determined experimentally in a simple manner with a very low cost. Standard V-notch Charpy specimens were prepared and tested under dynamic loading condition. The service temperatures of the weld metal, HAZ (heat affected zone) and base metal were derived by the absorbed energy and the impact test requirements; thus the applicability of the structural steels to cold regions was discussed in detail.

Damage Index of Steel Members under Severe Cyclic Loading

  • Park, Yeon-soo;Han, Suk-yeol;Suh, Byoung-chal;Jeon, Dong-ho;Park, Sun-joon
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.9-17
    • /
    • 2003
  • This paper aims at investigating the damage process of steel members leading to the failure under strong repeated loading, proposing the damage index using various factors related to the damage, and developing the analysis method for evaluating the damage state. Cantilever-type steel members were analyzed under uniaxial load and combined with a constant axial load, considering a horizontal displacement history. In analyzing the models, loading patterns and steel types (SS400, SM570, Posten80) were considered as main parameters. From the analysis results, the effects of parameter on the failures mode, the deformation capacity, the damage process are also discussed. Each failure process was compared as steel types. Consequently, the failure of steel members under strong repeated loading was determined by loading. Especially it was seen that the state of the failure is closely related to the local strain.

  • PDF

Application Study of High-Strength Steel(HSA800) for the Special Structure (특수구조 대상으로 고강도 강재(HSA800)의 현장 적용성 연구)

  • Kim, In-Ho;Lee, Hee-Su;Park, Sung-Yong;Kim, Jong-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.69-78
    • /
    • 2014
  • The purpose of this study is to increase applicability of high strength steel, HSA800 to the structure. Selected study of structure is to consider high strength steel, and following parts, 1) Tensile member with no consider of buckling, 2) Truss existing both tension and compression members with small slenderness ratio. This studied structure is included tension column hang on to the upper bridge truss. The structure element quantity with apply HSA800 instead of SM570 is reduced about 38.9% of tension column and 29.7% of bridge truss. In addition, the number of element's division is reduced about two sections due to reduction of self weight that the crane is able to lift up. This improves to reduce erection sequence and construction period which can save about a month. All connections are reviewed as welding and bolt. Also, the cost of welding is reduced about 41.3% due to apply HSA800. In conclusion, applying HSA800 to the hanging structure aggressively can secure economic and constructability.