• Title/Summary/Keyword: SM2

Search Result 1,596, Processing Time 0.031 seconds

Feasibility Study of HDDR and Mechanical Milling Processes for Preparation of High Coercivity SmCo5 Powder

  • Kwon, H.W.
    • Journal of Magnetics
    • /
    • v.8 no.3
    • /
    • pp.124-127
    • /
    • 2003
  • HDDR (hydrogenation, disproportionation, desorption, recombination) and mechanical milling processes have been applied to the $SmCo_{5}$ alloy in an attempt to produce a highly coercive powder. The $SmCo_{5}$ alloy had very high structural stability under the hydrogen atmosphere and the 1:5 phase was only partially disproportionated under up to 10 kgf/$\textrm{cm}^2$ hydrogen gas. The partially disproportionated material was recombined not into 1:5 phase after the HDDR, but rather into multi-phase mixture consisting of 1:5, 2:17, 2:7 and 1:7 phases. The $SmCo_{5}$ alloy HDDR-treated with hydrogen up to 10 kgf/$\textrm{cm}^2$ had poor coercivity. For a useful HDDR to prepare a high coercivity $SmCo_{5}$ alloy powder, much higher hydrogen pressure well exceeding 10 kgf/$\textrm{cm}^2$ would be required. The $SmCo_{5}$ alloy lump was amorphized by an intensive mechanical milling, and it was crystallised ultra-finely by a subsequent optimum annealing. The optimally annealed material had very high coercivity, and it was found that the mechanical milling followed by an annealing was an effective way of producing highly coercive $SmCo_{5}$ alloy powder.

Nitrogenation Process and Magnetic Properties of $Sm_{2}Fe_{17}$-Nitride ($Sm_{2}Fe_{17}N_{x}$의 질화과정 및 자기특성)

  • 김동환;권혁무;김택기;김희태;김윤배
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.858-863
    • /
    • 1995
  • The nitrogenation process and magnetic properties of $Sm_{2}Fe_{17}N_{x}\;(0{\leq}x{\leq}3)$ were investigated. During the initial nitrogenation process, the nitrogen content had linear relation with the square root of nitrogenation time, and the activation energy for the process was calculated to be 102.4 kJ/mol. The magnetic properties of $Sm_{2}Fe_{17}N_{x}$ were strongly dependent on the nitrogen content and the composition having $Sm_{2}Fe_{17}N_{2.8}$ showed optimum magnetic properties with a Curie temperature of 450 oC. The intrinsic magnetic properties of the nitride at room temperature were $M_{s}=1147\;emu/cm^{3},\;K_{1}=4.6{\times}10^{7}erg/cm^{3},\;K_{2}=6.0{\times}10^{7}erg/cm^{3}\;and\;H_{A}=290\;kOe$, respectively.

  • PDF

Effect of Sm2O3 Doping on Microstructure and Electrical Properties of ZPCCA-Based Varistors

  • Nahm, Choon-Woo
    • Korean Journal of Materials Research
    • /
    • v.31 no.10
    • /
    • pp.539-545
    • /
    • 2021
  • The effect of Sm2O3 doping on the microstructure and electrical properties of the ZPCCA-based varistors is comprehensively investigated. The increase of doping content of Sm2O3 results in better densification (from 5.70 to 5.82 g/cm3) and smaller mean grain size (from 7.8 to 4.1 ㎛). The breakdown electric field increases significantly from 2568 to 6800 V/cm as the doping content of Sm2O3 increases. The doping of Sm2O3 remarkably improves the nonlinear properties (increasing from 23.9 to 91 in the nonlinear coefficient and decreasing from 35.2 to 0.2 µA/cm2 in the leakage current density). Meanwhile, the doping of Sm2O3 reduces the donor concentration (the range of 2.73 × 1018 to 1.18 × 1018 cm-3) of bulk grain and increases the barrier height (the range of 1.10 to 1.49 eV) at the grain boundary. The density of the interface states decreases in the range of of 5.31 × 1012 to 4.08 × 1012 cm-2 with the increase of doping content of Sm2O3. The dielectric constant decreases from 1594.8 to 507.5 with the increase of doping content of Sm2O3.

Inhibition Mechanism of Endothelin-l-induced $Ca^{2+}$ Mobilization of Antimelanogenic Ingredient: 1,2-Ο-Diferulylglycerol

  • Lee, K. M.;Park, J. B.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.73-86
    • /
    • 2003
  • Endothelins secreted from keratinocytes are intrinsic madiators for human melanocytes in UVB-induced pigmentation. Antimelanogenic ingredient, 1,2-Ο-diferulylglycerol(SM709) isolated from bamboo extract inhibited the melanin synthesis of Bl6F10 melanoma cells by 62%. To understand the cellular mechanism of antimelanogenic activity of SM709 in human melanocytes, the effects of SM709 on the ET-l-induced $Ca^{2+}$ mobilization were investigated. ET-l receptors in human melanocytes were characterized by using specific antagonist and found that ET-l increased intracellular $Ca^{2+}$ by activating ET-B receptor. SM709 completely blocked the ET-l-induced intracellular $Ca^{2+}$ increase and its inhibitory effect showed dose- and time- dependent manners. To investigate the role of SM709 on intracellular $Ca^{2+}$ store, when the $Ca^{2+}$ store was partially depleted by thapsigargin; a specific inhibitor of ER-type $Ca^{2+}$-ATPase, caffeine-induced $Ca^{2+}$ mobilization did not changed in the presence or absence of SM709, suggesting that SM709 has no effect on the $Ca^{2+}$ store. It is known that LPA receptor and P$_2$ receptor are linked to InsP$_3$ second messenger system. When these receptors in melanocytes were activated by LPA and ATP, the intracellular $Ca^{2+}$ signaling was observed even in the presence of SM709. From the above results, it can be suggested that SM709 has an antimelanogenic activity by antagonizing the ET-B receptor, resulting in subsequent intracellular $Ca^{2+}$ signaling, in UV induced pigmentation.nduced pigmentation.

  • PDF

The Co-luminescence Groups of Sm-La-pyridyl Carboxylic Acids and the Binding Characteristics between the Selected Doped Complex and Bovine Serum Albumin

  • Yang, Zhengfa;Tang, Ruiren;Tang, Chunhua
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1303-1309
    • /
    • 2012
  • A novel ligand N,N'-(2,6-pyridinedicarbonyl)bis[N-(carboxymethyl)] (L1) was designed and synthesized. Four co-luminescence groups of Sm-La-pyridyl carboxylic acids systems were researched, which are $K_4Sm_{(1-x)}-La_x(L_1)Cl_3{\cdot}y_1H_2O$, $K_4Sm_{(1-x)}La_x(L_2)Cl_3{\cdot}y_2H_2O$, $K_6Sm_{2(1-x)}La_{2x}(L_3)Cl_6{\cdot}y_3H_2O$, $K_4Sm_{(1-x)}La_x(L_4)Cl_3{\cdot}y_4H_2O$. The results indicated the addition of La(III) could sensitize the luminescence of Sm(III) obviously in a certain range, enhancing emission intensity of Sm-pyridyl carboxylic acids relative to the undoped ones. The optimal mole percentages of La(III) in the mixed ions for $L_1$, $L_2$, $L_3$, $L_4$ were confirmed to be 0.6, 0.5, 0.3, 0.6, respectively. The mechanism of the fluorescence enhancement effect was discussed in detail. Furthermore, the binding interaction of $K_4Sm_{0.4}La_{0.6}(L_4)Cl_3{\cdot}5H_2O$ with bovine serum albumin (BSA) have been investigated due to its potential biological activity. The binding site number n was equal to 1.0 and binding constant $K_a$ was about $2.5{\times}10^5\;L{\cdot}mol^{-1}$.

Salinity and sodicity disturbs growth of medicinal crop Guar (Cyanoposisa tetragonoloba)

  • Ullah, Muhammad Arshad;Rasheed, Muhammad;Mahmood, Imdad Ali
    • The Korean Journal of Food & Health Convergence
    • /
    • v.4 no.2
    • /
    • pp.7-11
    • /
    • 2018
  • Salinity is one of the major and increasing problems in irrigated agriculture in Pakistan. Salinity stress negatively affects the growth and yield of plants guar (Cyanoposisa tetragonoloba). This experiment was conducted to evaluate the effects of ($4dSm^{-1}+13.5(mmol\;L^{-1})^{1/2}$, $5dSm^{-1}+25(mmol \;L^{-1})^{1/2}$, $5dSm^{-1}+30(mmol\;L^{-1})^{1/2}$, $10dSm^{-1}+25(mmol\;L^{-1})^{1/2}$ and $10dSm^{-1}+30(mmol \;L^{-1})^{1/2}$) on biomass yield of guar against salinity tolerance. Maximum biomass yield ($54.50gpot^{-1}$) was produced by $4dSm^{-1}+13.5(mmol\;L^{-1})^{1/2}$ treatment. Biomass produce was reduced with the increase of the salts toxicity. Minimum biomass yield ($30.17gpot^{-1}$) was attained under $10dSm^{-1}+30(mmol \;L^{-1})^{1/2}$. $5dSm^{-1}+25(mmol\;L^{-1})^{1/2}$ treatment exhibited improved outcome i.e. the least diminution % over control (18.66). Salinity cum sodicity showed staid effect on the growth reduction from 18.66% to 44.64%. This reduction fissure was impacted by the toxic effect of salinity and sodicity on Guar growth. Salinity- sodicity behaved toxic impact on the growth reduction from 18.66% to 44.64%. Based on the findings, guar (Cyanoposisa tetragonoloba) grows better at $4dSm^{-1}+13.5(mmol \;L^{-1})^{1/2}$ treatment.

A cytotaxonomic study of Vicia L. (Fabaceae) in Korea (한국산 나비나물속(콩과)의 세포분류학적 연구)

  • Nam, Bo Mi;Park, Myung Soon;Oh, Byoung Un;Chung, Gyu Young
    • Korean Journal of Plant Taxonomy
    • /
    • v.42 no.4
    • /
    • pp.307-315
    • /
    • 2012
  • Somatic chromosome numbers for 10 taxa and karyotypes analysis for 6 taxa of Korean Vicia were investigated. Somatic chromosome numbers of treated taxa were 2n = 12, 14 or 24 and therefore they proved to be diploid or tetraploid with basic chromosome numbers of x = 6 or 7. The chromosome number of V. hirticalycina (2n = 2x = 12) was reported for the first time in this study. The chromosome numbers of nine taxa were the same as in previous studies; V. angustifolia (2n = 2x = 12), V. cracca (2n = 4x = 24), V. hirsuta (2n = 2x = 14), V. tetrasperma (2n = 2x = 14 + 2B), V. amurensis (2n = 2x = 12), V. chosenensis (2n = 2x = 12, 12 + 2B), V. unijuga (2n = 4x = 24), V. unijuga f. minor (2n = 4x = 24), V. venosa var. cuspidata (2n = 4x = 24). The karyotypes of V. cracca, V. amurensis, V. hirticalycina, V. unijuga, V. unijuga f. minor, V. venosa var. cuspidata were observed as 2 m + 8 sm + 2 st, 2 m + 2 sm + 2 st, 3 m + 1 sm + 2 st, 4 m + 6 sm + 2 st, 4 m + 6 sm + 2 st, 4 m + 8 sm, respectively.

A Study on the Friction Welding of SM45C/SM20C-Pipe which Used in the Light Piston-Rod (경량화 쇽업소바 피스톤로드에 사용되는 SM45C/SM20C-Pipe의 마찰용접에 관한 연구)

  • Min, Byung-Hoon;Choi, Su-Hyun;Kang, Jeong-Sik;Lee, Hyung-Ho;Min, Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.17 no.4
    • /
    • pp.42-50
    • /
    • 2008
  • Various researches to reduce weight of a vehicle are achieving. One of these researches is tendencious to manufacture the hollow piston rod using friction welding instead of solid one of the vehicle shock absorber. This study deals with the friction welding of SM45C to SM20C-pipe that is used normally in the vehicle shock absorber. The friction time was variable conditions under the conditions of spindle revolution of 2,000rpm, friction pressure of 55MPa, upset pressure of 75MPa, and upset time of 2.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests of friction weld were studied and so the results were as follows. When the friction time was l.5seconds under the conditions, the maximum tensile strength of the friction weld happened to be 837MPa, which is 113% of SM20C's tensile strength and 97% of SM45C's. The optimal welding conditions were n=2,000rpm, $P_1=55MPa$, $P_2=75MPa$, $t_1=1.5sec$, $t_2=2.0sec$ when the total upset length is 1.7mm.

Electronic and Magnetic Propwrties of a Novel Rare-earth Permanent Magnet : $Sm_{2}Fe_{17}N_{3}$ (신소재 희토류 영구자석, $Sm_{2}Fe_{17}N_{3}$ 화합물의 전자구조 연구)

  • 민병일;양충진
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.2
    • /
    • pp.94-100
    • /
    • 1993
  • Electronic and magnetic properties of the novel rare-earth permanent magnet, $Sm_{2}Fe_{17}N_{3}$, are investigated by performing self-consistent local density functional electronic structure calculations. Employing the LMTO(Linearized Muffin-Tin Orbital) band method, we have obtained the electronic band structures for both paramag-netic and ferromagnetic phases of $Sm_{2}Fe_{17}N_{3}$. Based on the energy band structures, we have studied bonding ef-fects among Sm, Fe, and N atom as well as electronic and magnetic structures. It is found that the N atom sub-stantially reduces the magnetic moment of neighboring Fe atoms through the hybridization interaction and also plays a role in stabilizing the structure. the average magnetic moment of Fe atoms in the ferromagnetic phase of $Sm_{2}Fe_{17}N_{3}$ is estimated to be $2.33{\mu}_B$, which is ~8% larger than the magnetic moment of $Sm_{2}Fe_{17}$, $2.16{\mu}_B$. The Fe I (c) atom, which is located farthest from the N atom and surrounded by 12 Fe nearest neighbors, has the largest magnetic moment ($2.65{\mu}_B$), while the Fe III (f), whose hybridization interaction with N atom is very strong, has the smallest magnetic moment($1.96{\mu}_B$).

  • PDF

Structural, Morphological, and Optical Properties of LaNbO4:RE3+ (RE = Dy, Dy/Sm, Sm) Phosphors (LaNbO4:RE3+ (RE = Dy, Dy/Sm, Sm) 형광체의 구조, 표면, 광학 특성)

  • Lee, Jinhong;Cho, Shinho
    • Journal of Surface Science and Engineering
    • /
    • v.51 no.5
    • /
    • pp.271-276
    • /
    • 2018
  • The effects of activator ion on the structural, morphological, and optical properties of $LaNbO_4:RE^{3+}$ (RE = Dy, Dy/Sm, Sm) phosphors were investigated. X-ray diffraction patterns exhibited that all the phosphors showed a monoclinic system with a main (112) diffraction peak, irrespective of the concentration and type of activator ions. The grain size showed a slightly decreasing tendency as the concentration of $Sm^{3+}$ ions increased. The excitation spectra of the $LaNbO_4:Dy^{3+}$, $Sm^{3+}$ phosphor powders consisted of a strong charge transfer band centered at 259 nm in the range of 220-290 nm and five weak peaks. The emission spectra of the $La_{0.95}NbO_4$:5 mol% $Dy^{3+}$ phosphors exhibited two intense yellow and blue bands centered at 575 nm and 479 nm respectively, which resulted from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ and $^4F_{9/2}{\rightarrow}^6H_{15/2}$ transitions of $Dy^{3+}$. As the concentration of $Sm^{3+}$ was increased, the intensity of the yellow emission band was gradually decreased, while those of orange and red emission bands centered at 604 and 646 nm began to appear and reached maxima at 5 mol%, and then decreased rapidly with further increases in the $Sm^{3+}$ concentration. These results indicated that white light emission could be realized by controlling the concentrations of the $Dy^{3+}$ and $Sm^{3+}$ ions incorporated into the $LaNbO_4$ host crystal.