• Title/Summary/Keyword: SM2

Search Result 1,596, Processing Time 0.027 seconds

THE COMPARISON OF STREPTOCOCCUS MUTANS ISOLATED FROM OCCLUSAL SURFACES OF CARIES AND NON-CARIES TEETH (우식치아와 정상치아의 교합면에서 분리한 Streptococcus mutans의 비교)

  • Park, Ho-Won;Jung, Tae-Sung;Jung, Jin;Kim, Shin
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.28 no.1
    • /
    • pp.129-141
    • /
    • 2001
  • When oral microorganisms were sampled from occlusal surfaces of caries and non-caries teeth, $3.43\times10^5$ CFU and $3.47\times10^3$ CFU of bacteria were counted on MSB agar plates, respectively. All the 20 colonies isolated from a caries surface were Streptococcus mutans but, only two of 20 colonies were identified as Streptococcus mutans by API test. S. mutans SM1 from caries tooth and S. mutans SM2 from non-caries tooth showed the same results except for $\alpha-galactosidase$ activity on sugar fermentation tests and biochemical tests. For the bacterial replication, both SM1 and SM2 were actively multiplicated at pH 5.5. And the viability of SM1 was high at 20% of sucrose, while that of SM2 was high at 5% of sucrose in the media. SM1 actively replicated at 16mM of $CaCl_2$, 160mM of KCl, and 6.4mM of $MgCl_2$, and the replication of SM2 was increased at 16mM of $CaCl_2$, 40mM of KCl, 6.4mM of $MgCl_2$. At 1mM of sodium bicarbonate and sodium phosphate, both bacteria were actively multiplicated. SM1 and SM2 were actively replicated at 1mM and 10mM of Tris, respectively. For potassium phosphate buffer, SM1 grew well proportionally to the concentration up to 100mM, while the growth of SM2 were inhibited by the increase of concentration. The 4.6 kb of gtf gene was amplified with a pair of primer, gtfB-F961 and gtfC-R5574 by polymerase chain reaction from the chromosomal DNA of SM1 and SM2. When 4.6kb bands were eluted from gel and were treated with restriction enzyme, EcoR I produced the same RFLP like 0.8kb and 3.8kb of DNA fragments for S. mutans GS-5, SM1 and SM2. By Hind III, the PCR products weren't digested for S. mutans GS-5 and SM1, but 3 fragments such as 2.4kb, 1.8kb and 400bp were examined for SM2. These results indicated the difference between gtf genes of SM1 and SM2. BamH I treatment showed 4 fragments for SM1 and SM2, while the 3 fragments for S. mutans GS-5. The PCR products were not digested by Kpn I, Sma I, Xho I and Pst I.

  • PDF

Melt growth and superconducting properties of Sm-doped YBCO super-conductor by zone melting method (국부용융성장법으로 제조된 Sm이 첨가된 YBCO 초전도체의 용융온도 및 성장 속도에 따른 미세구조)

  • 김소정
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.2
    • /
    • pp.68-72
    • /
    • 2004
  • Sm-doped YBCO high $T_c$ superconductor was directionally grown by zone melt growth process in air atmosphere. Cylindrical green rods of $(Sm/Y)_{1.8}Ba_{2.4}Cu_{3.4}O_{7-x}$[(Sm/Y)1.8] oxides were fabricated by cold isostatic pressing (CIP) method using rubber mold. Based on the variation of melting temperature and growth rate, the microstructure and superconducting properties were systematically measured by using optical micrographs, TEM and SQUID magnetometer. In this study optimum melting temperature and growth rate were $1085^{\circ}C$ and 3.5 mm/hr respectively. Nonsuperconducting $(Sm/Y)_2BaCuO_5$ inclusions of (Sm/Y)1.8 superconductor were uniformly distributed within the superconducting (Sm/Y) $Ba_2Cu_3O^{7-x}$ matrix. The directionally melt-textured (Sm/Y)1.8 superconductor showed an onset $T_c$ $\geq$ 90K and sharp superconducting transition.

A Basic Study on the Production of $Sm_{2}Fe_{17}N_{x}$ System Rare Earth Permanent Magnet by the Reduction and Diffusion(I) - Production of Alloy Powder of $Sm_{2}Fe_{17}$ Intermetallic Compound - (환원.확산법에 의한 $Sm_{2}Fe_{17}N_{x}$ 계 희토류 영구자석의 제조에 관한 기초연구(제 1보) -$Sm_{2}Fe_{17}$금속간화합물 합금분말의 제조-)

  • Song, Chang-Bin;Choo, Tong-Rae
    • Korean Journal of Materials Research
    • /
    • v.8 no.8
    • /
    • pp.720-725
    • /
    • 1998
  • As a basic study on the production of $Sm_{2}Fe_{17}N_{x}$ system rare earth permanent magnet by the reduction and diffusion(R- D) process, firstly the reduction reaction of $Sm_2O_3$ by metallic Ca and diffusion of Sm into Fe powder was investigated for the production the $Sm_{2}Fe_{17}$intermetallic compound. We concluded that the former case was very rapidly completed under the high temperature greater than 100$0^{\circ}C$ and the latter case of completion of diffusion reaction of Sm into the center of Fe powder(perfect homogenization condition) was required through 3h R- D reaction at 110$0^{\circ}C$ and identified as a rate determining step(RDS) on the whole reaction. Though $SmFe_2,SmFe_3$, and $Sm_{2}Fe_{17}$phases in the growth of phases of intermetallic compound in the Sm - Fe binary system were obseved below 100$0^{\circ}C$, but only $Sm_{2}Fe_{17}$phase was observed at lIOO$^{\circ}C$. Oxygen and Ca contents of the final sample in this work were 0.72wt% and O. 11 wt% respectively.

  • PDF

Flux Pinning Enhancement and Irreversibility Line of Sm doped YBCO Superconductor by Zone Melt Growth Process

  • Kim, So-Jung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.2
    • /
    • pp.81-85
    • /
    • 2004
  • High T$\_$c/ (Sm/Y)$\_$1.8/Ba$\_$2.4/Cu$\_$3.4/O$\_$7-$\delta$/ [(Sm/Y)] superconductor, a combination of Y and Sm(50% each), was systematically investigated by the zone melt growth process. A sample prepared by this method showed well-textured microstructure, and (Sm/Y)$_2$BaCuO$\_$5/[(Sm/Y)211]inclusions were uniformly dispersed in large (Sm/Y)Ba$_2$Cu$_3$O$\_$y/ [(Sm/Y)123]matrix. The sample showed a sharp superconducting transition at 91 K. The magnetization measurements of the (Sm/Y)1.8 sample exhibited the enhanced flux pinning, compared with Y$\_$1.8/Ba$\_$2.4/Cu$\_$3.4/O$\_$7-$\delta$/(Y1.8) sample without Sm. Critical current densities of (Sm/Y) 1.8 sample was 3.5${\times}$10$^4$A/$\textrm{cm}^2$ at 1 T and 77 K.

Luminescent Properties of SrTiO3 Phosphors doped with Sm (Sm을 첨가한 SrTiO3 형광체의 발광특성)

  • Park, Chang-Sub;Yu, Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.11
    • /
    • pp.1019-1023
    • /
    • 2008
  • Photoluminescence properties of $SrTiO_3$:Sm red phosphors synthesized by solid state reaction method were studied under 254 nm excitation. Emission bands at 576 nm and 616 nm in heavily $Sm^{3+}$ ion doped $SrTiO_3$:Sm phosphors were observed, which were attributed to $^4G_{5/2}\rightarrow{^6}H_{5/2}$ and $^4G_{5/2}\rightarrow{^6}H_{7/2}$ transition of $Sm^{3+}$, respectively. The $Sm^{3+}$ ion concentration exhibiting the maximum emission intensity in the $SrTiO_3$:Sm was 30 mol%. The luminescence caused by $Sm^{3+}$ in the $SrTiO_3$:Sm phosphors was interpreted by the energy transfer between $Sm^{3+}$ ions.

Synthesis of ferromagnetic Sm-Fe-N powders subjected to mechanochemical reaction (Mechanochemical Reaction에 의한 Sm-Fe-N계 자성분말의 합성)

  • 이충효;최종건;김판채
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.4
    • /
    • pp.292-296
    • /
    • 2000
  • Mechenochemical reaction by planetary type ball mill is applied to prepare $Sm_2$$Fe_{17}$$N_{x}$ permanent magnet powders. Starting from pure samarium and iron powders, the formation process of hard magnetic $Sm_2$$Fe_{17}$$N_{x}$ phase by ball milling and a subsequent solid state reaction were studied. At as-milled stage powders were found to consist of amorphous Sm-Fe and $\alpha$-Fe phases in all composition of $Sm_2$$Fe_{100-x}$(x = 11, 13, 15). The dependence of starting composition of elemental powder on the formation of Sm-Fe intermetallic compound was investigated by heat treatment of as-milled powders. When Sm concentration was 15 at%, heat-treated powder consists of mostly $Sm_2$$Fe_{17}$$N_{x}$single phase. For synthesizing of hard magnetic $Sm_2$$Fe_{17}$$N_{x}$ compound, additional nitriding treatment was carried out under $N_2$gas atmosphere at $450^{\circ}C$. The increase in the coercivity and remanence was parallel to the nitrogen content which increased drastically at first and then gradually as the nitriding time was extended. The ball-milled Sm-Fe-N powders were expected to be prospective materials for synthesizing of permanent magnet with high performance.

  • PDF

Preparation of Hard Magnetic $Sm_2Fe_{17}N_x$ Compound by Mechanical Alloying (기계적 합금화법에 의한 영구자석용 $Sm_2Fe_{17}N_x$ 화합물의 제조)

  • 이충효;김명근;석명진;김지순;윤석길;권영순
    • Journal of Powder Materials
    • /
    • v.8 no.1
    • /
    • pp.55-60
    • /
    • 2001
  • Mechanical alloying technique was applied to prepare hard magnetic $Sm_2Fe_{17}N_x$ compound powders. Staring from pure Fe and Sm powders, the formation process of hard magnetic $Sm_2Fe_{17}N_x$ phase by mechanical alloying and subsequent solid state reaction was studied. As milled powders were found to consist of Sm-Fe amorphous and $\alpha$-Fe phases in all compositions of $Sm_xFe_{100-x}$(x = 11, 13, 15, 17). The effects of starting composition on the formation of $Sm_2Fe_{17}$ intermetallic compound was investigated by heat treatment of mechanically-alloyed powders. When Sm content was 15 at.%, heat-treated powders consisted of nearly $Sm_2Fe_{17}$ single phase. For preparation of hard magnetic $Sm_2Fe_{17}N_x$ powders, additional nitriding treatment was performed under $N_2$ gas flow at 45$0^{\circ}C$. The increase in the coercivity and remanence was proportional to the nitrogen content which increased drastically at first and then increased gradually as the nitriding time was extended to 3 hours.

  • PDF

Effect of Process Temperature on the Sm2Fe17 Alloying Process During a Reduction-Diffusion Process Using Fe Nanopowder (Fe 나노분말을 사용한 환원-확산공정에서 Sm2Fe17 합금상형성에 미치는 공정온도의 영향)

  • Yun, Joon-Chul;Lee, Geon-Yong;Lee, Jai-Sung
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.11
    • /
    • pp.995-1002
    • /
    • 2010
  • This study investigated the effect of process temperature on the alloying process during synthesis of $Sm_2Fe_{17}$ powder from ball-milled samarium oxide ($Sm_2O_3$) powders and a solid reducing agent of calcium hydrides ($CaH_2$) using iron nanopowder (n-Fe powder) by a reduction-diffusion (R-D) process. The $n-Fe-Sm_2O_3-CaH_2$ mixed powders were subjected to heat treatment at $850{\sim}1100^{\circ}C$ in $Ar-H_2$ for 5 h. It was found that the iron nanopowders in the mixed powders are sintered below $850^{\circ}C$ during the R-D process and the $SmH_2$ is synthesized by a reduced Sm that combines with $H_2$ around $850^{\circ}C$. The results showed that $SmH_2$ is able to separate Sm and $H_2$ respectively depending on an increase in process temperature, and the formed $Sm_2Fe_{17}$ phase on the surface of the sintered Fe nanopowder agglomerated at temperatures of $950{\sim}1100^{\circ}C$ in this study. The formation of the $Sm_2Fe_{17}$ layer is mainly due to the diffusion reaction of Sm atoms into the sintered Fe nanopowder, which agglomerates above $950^{\circ}C$. We concluded that nanoscale $Sm_2Fe_{17}$ powder can be synthesized by controlling the diffusion depth using well-dispersed Fe nanopowders.

Influence of Composition on Soft Magnetic Properties of As-Deposited Fe-Sm-O Thin Films (조성변화에 따른 Fe-Sm-O계 박막의 연자기적 성질)

  • Yoon, T.S.;Cho, W.S.;Koo, E.S.;Li, Ying;Park, J.B.;Kim, C.O.
    • Korean Journal of Materials Research
    • /
    • v.11 no.1
    • /
    • pp.39-43
    • /
    • 2001
  • Nanocrystalline Fe-Sm-O thin films were prepared by RF magnetron reactive sputtering method in $Ar+O_2$mixed atmosphere with the $O_2$content of 5%. The compositions of the thin films were changed by changing the number of $Sm_2O_3$ chips. The best soft magnetic properties of the thin film with the composition of $Fe_{83.4}Sm_{3.4}O_{13.2}$ were saturation flux density of 18 kG, coercivity of 0.82 Oe and effective permeability about 2,600 at 0.5~100 MHz, respectively. The electrical resistivity of Fe-Sm-O thin films was increased with increasing the amount of Sm and O elements which combined each other, the electrical resistivity of$Fe_{83.4}Sm_{3.4}O_{13.2}$ thin film was $130{\mu}{\Omega}cm$. In case of the small amount of Sm and O elements, the microstructures of Fe-Sm-O thin films showed a precipitated phase of $Sm_2O_3$ on the ${\alpha}-Fe$ phase. With the increase of the amount of Sm and O elements, the microstructures of the Fe- Sm-O thin films were changed into a mixed structure of ${\alpha}-Fe$ crystal-phase and Sm-oxide amorphous phase. The Fe-Sm-O thin films with Fe content in the range of 72~94 at% exhibited the quality factor (Q = $\mu$′/$\mu$") of 7~75 up to 50 MHz.

  • PDF

Crystal Structure and Low Temperature Magnetic Properties of Melt-Spun $Sm_{2}Co_{7}B_{3}$ Compound (급냉응고된 $Sm_{2}Co_{3}B_{7}$ 화합물의 결정구조와 저온 자기특성)

  • Yang, C.J.;Lee, W.Y.;Choi, S.D.
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.4
    • /
    • pp.284-288
    • /
    • 1993
  • Low temperature magnetic properties and crystal structures of melt-spun $Sm_{2}Co_{7}B_{3}$ compound were characterized. The magnetic measurements in the temperature range 77 K~450 K indicated that a spin-reorientation took place at about 150~160 K. A large anisotropy was observed(Ha=135 kOe at 300 K, 725 kOe at 77 K) for $Sm_{2}Co_{7}B_{3}$ although the magnetic moment is rather low. The crystal structure of the $Sm_{2}Co_{7}B_{3}$ compound was analyzed in detail by Rietveld analysis of powder diffraction pattern, and it was revealed that B(4h) atoms are not placed in the Sm(2e) layer but in between the Sm(2e) and Co($6i_{1}$) layers.

  • PDF