• Title/Summary/Keyword: SM(Sub-Module)

Search Result 20, Processing Time 0.026 seconds

Power Loss Modeling of Individual IGBT and Advanced Voltage Balancing Scheme for MMC in VSC-HVDC System

  • Son, Gum Tae;Lee, Soo Hyoung;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1471-1481
    • /
    • 2014
  • This paper presents the new power dissipation model of individual switching device in a high-level modular multilevel converter (MMC), which can be mostly used in voltage sourced converter (VSC) based high-voltage direct current (HVDC) system and flexible AC transmission system (FACTS). Also, the voltage balancing method based on sorting algorithm is newly proposed to advance the MMC functionalities by effectively adjusting switching variations of the sub-module (SM). The proposed power dissipation model does not fully calculate the average power dissipation for numerous switching devices in an arm module. Instead, it estimates the power dissipation of every switching element based on the inherent operational principle of SM in MMC. In other words, the power dissipation is computed in every single switching event by using the polynomial curve fitting model with minimum computational efforts and high accuracy, which are required to manage the large number of SMs. After estimating the value of power dissipation, the thermal condition of every switching element is considered in the case of external disturbance. Then, the arm modeling for high-level MMC and its control scheme is implemented with the electromagnetic transient simulation program. Finally, the case study for applying to the MMC based HVDC system is carried out to select the appropriate insulated-gate bipolar transistor (IGBT) module in a steady-state, as well as to estimate the proper thermal condition of every switching element in a transient state.

New Pre-charging Method for Modular Multi-level Converter Operated in Nearest Level Control Modulation (근사 계단 제어 변조로 동작하는 모듈형 멀티 레벨 컨버터를 위한 새로운 초기 충전 기법)

  • Kim, Kyo-Min;Kim, Jae-Hyuk;Kim, Do-Hyun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1655-1663
    • /
    • 2016
  • Recently the researches on Modular Multi-level Converter (MMC) are being highlighted because high quality and efficient power transmission are key issues in the High Voltage Direct Current (HVDC) transmission system. This paper proposes an improved pre-charging method for the sub-module capacitors in MMC that operates in Nearest Level Control (NLC) modulation. The proposed method does not require additional circuits or Pulse Width Modulation (PWM) techniques. The feasibility of proposed method was verified through computer simulations for a scaled 3-phase 10kVA MMC with 12 sub-modules per each arm. Hardware experiments with a scaled prototype were performed in the lab to confirm the simulation results.

Protection of the MMCs of HVDC Transmission Systems against DC Short-Circuit Faults

  • Nguyen, Thanh Hai;Lee, Dong-Choon
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.242-252
    • /
    • 2017
  • This paper deals with the blocking of DC-fault current during DC cable short-circuit conditions in HVDC (High-Voltage DC) transmission systems utilizing Modular Multilevel Converters (MMCs), where a new SubModule (SM) topology circuit for the MMC is proposed. In this SM circuit, an additional Insulated-Gate Bipolar Translator (IGBT) is required to be connected at the output terminal of a conventional SM with a half-bridge structure, hereafter referred to as HBSM, where the anti-parallel diodes of additional IGBTs are used to block current from the grid to the DC-link side. Compared with the existing MMCs based on full-bridge (FB) SMs, the hybrid topologies of HBSM and FBSM, and the clamp-double SMs, the proposed topology offers a lower cost and lower power loss while the fault current blocking capability in the DC short-circuit conditions is still provided. The effectiveness of the proposed topology has been validated by simulation results obtained from a 300-kV 300-MW HVDC transmission system and experimental results from a down-scaled HVDC system in the laboratory.

Switching-Level Operation Analysis of MMC-based Back-to-Back Converter for HVDC Application (HVDC 적용을 위한 MMC 기반 Back-to-Back 컨버터의 스위칭레벨 동작분석)

  • Hong, Jung-Won;Jeong, Jong-Kyou;Yoo, Seong-Hwan;Choi, Jong-Yun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1240-1248
    • /
    • 2013
  • This paper describes a switching-level operation analysis of BTB(Back-To-Back) converter for HVDC(high voltage DC) application based on MMC(modular multi-level converter). A switching-level operation analysis for BTB converter is very important to understand the converter operation in detail and check the voltage and current transients in each components. However, the development of switching-level simulation model for the actual size BTB Converter is very difficult because the MMC normally has more than 150 sub-modules for each arm. So, a switching level simulation model for the 11-level MMC-based BTB converter was developed with PSCAD/EMTDC software, which has 12 sub-modules for the positive arm and another 12 sub-modules for the negative arm. The DC-voltage balance algorithm, the circulating-current reduction algorithm, the harmonic reduction algorithm, and the redundancy operation algorithm were included in this simulation model. The developed simulation model can be utilized to analyze the MMC-based BTB converter for HVDC application in switching level and to develop the protection scheme for the MMC-based BTB converter for HVDC application.

Design and Control Method for Sub-module DC Voltage Ripple of HVDC-MMC

  • Gwon, Jin-Su;Park, Jung-Woo;Kang, Dea-Wook;Kim, Sungshin
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.921-930
    • /
    • 2016
  • This paper proposes a design and control method for a high-voltage direction current modular multilevel converter (HVDC-MMC) considering the capacitor voltage ripple of the submodule (SM). The capacitor voltage ripple consists of the line frequency and double-line-frequency components. The double line- frequency component does not fluctuate according to the active power, whereas the line-frequency component is highly influenced by the grid-side voltage and current. If the grid voltage drops, a conventional converter increases the current to maintain the active power. A grid voltage drops, current increment, or both occur with a capacitor voltage ripple higher than the limit value. In order to reliably control an MMC within a limit value, the SM capacitor should be designed on the basis of the capacitor voltage ripple. In this paper, the capacitor voltage ripple according to the grid voltage and current are analyzed, and the proposed control method includes a current limitation method considering the capacitor voltage ripple. The proposed design and control method are verified through simulation using PSCAD/EMTDC.

Test of MMC HVDC Control System using Hardware-in-the-Loop Simulation (HILS를 이용한 MMC HVDC 제어 시스템 시험)

  • Lee, Dong-Gyu;Lee, Jun-Chol;Choi, Jong-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.339-340
    • /
    • 2015
  • 본 논문에서는 HVDC 제어 시스템의 기능 검증을 위해 구축한 RTDS 기반의 HILS(Hardware-In-the Loop Simulation)시스템 및 시험 결과를 소개하였다. MMC 기반 VSC HVDC는 다수의 직렬 연결된 SM(Sub-Module)을 개별 제어해야 하므로 기존의 LCC HVDC 및 2/3-Level 컨버터 기반의 VSC HVDC와 같은 설비들보다 훨씬 더 복잡한 VBE 구조를 가지고 있다. 또한 짧은 시간 내에 정밀한 제어가 가능해야 하므로 높은 제어 정밀도가 요구된다. (주)효성에서는 제어 시스템의 성능 검증을 위해 RTDS 기반의 HILS(Hardware-In-the Loop Simulation)시스템을 구축하였으며, 이를 이용하여 HVDC 제어 시스템의 성능 시험을 수행하였다. 본 논문에서는 구축된 RTDS 기반의 HILS 시스템 및 시험 결과를 소개하였다.

  • PDF

Scheme for Reducing Harmonics in Output Voltage of Modular Multilevel Converters with Offset Voltage Injection

  • Anupom, Devnath;Shin, Dong-Cheol;Lee, Dong-Myung
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1496-1504
    • /
    • 2019
  • This paper proposes a new THD reduction algorithm for modular multilevel converters (MMCs) with offset voltage injection operated in nearest level modulation (NLM). High voltage direct current (HVDC) is actively introduced to the grid connection of offshore wind powers, and this paper deals with a voltage generation technique with an MMC for wind power generation. In the proposed method, third harmonic voltage is added for reducing the THD. The third harmonic voltage is adjusted so that each of the pole voltage magnitudes maintains a constant value with a maximum number of (N+1) levels, where N is the number of sub-modules per arm. By using the proposed method, the THD of the output voltage is mitigated without increasing the switching frequency. In addition, the proposed method has advantageous characteristics such as simple implementation. As a part of this study, this paper compares the THD results of the conventional method and the proposed method with offset voltage injection to reduce the THD. In this paper, simulations have been carried out to verify the effectiveness of the proposed scheme, and the proposed method is implemented by a HILS (Hardware in the Loop Simulation) system. The obtained results show agreement with the simulation results. It is confirmed that the new scheme achieved the maximum level output voltage and improved the THD quality.

Improved Modulation Scheme for Medium Voltage Modular Multi-level Converter Operated in Nearest Level Control (근사레벨제어로 동작하는 중전압 모듈형 멀티레벨 컨버터의 개선된 전압변조기법)

  • Kim, Do-Hyun;Kim, Jae-Hyuk;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.285-296
    • /
    • 2017
  • This paper proposes an improved modulation scheme for the medium voltage modular multi-level converter (MMC), which operates in the nearest level control and applies in the medium voltage direct current (MVDC) system. In the proposed modulation scheme, the offset (neutral-to-zero output) voltage is adjusted, with the phase voltage magnitude, thereby maintaining a constant value with N+1 level in the controllable modulation index (MI) range. In order to confirm the proposed scheme's validity, computer simulations for the 22.9 kV - 25 MVA MMC were performed with PSCAD/EMTDC, as well as hardware experiments for the 380 V - 10 kVA MMC. The proposed modulation scheme offers to build a constant pole voltage regardless of the MI value, and to build a phase voltage with improved total harmonic distortion (THD).

The Construction of QoS Integration Platform for Real-time Negotiation and Adaptation Stream Service in Distributed Object Computing Environments (분산 객체 컴퓨팅 환경에서 실시간 협약 및 적응 스트림 서비스를 위한 QoS 통합 플랫폼의 구축)

  • Jun, Byung-Taek;Kim, Myung-Hee;Joo, Su-Chong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.11S
    • /
    • pp.3651-3667
    • /
    • 2000
  • Recently, in the distributed multimedia environments based on internet, as radical growing technologies, the most of researchers focus on both streaming technology and distributed object thchnology, Specially, the studies which are tried to integrate the streaming services on the distributed object technology have been progressing. These technologies are applied to various stream service mamgements and protocols. However, the stream service management mexlels which are being proposed by the existing researches are insufficient for suporting the QoS of stream services. Besides, the existing models have the problems that cannot support the extensibility and the reusability, when the QoS-reiatedfunctions are being developed as a sub-module which is suited on the specific-purpose application services. For solving these problems, in this paper. we suggested a QoS Integrated platform which can extend and reuse using the distributed object technologies, and guarantee the QoS of the stream services. A structure of platform we suggested consists of three components such as User Control Module(UCM), QoS Management Module(QoSM) and Stream Object. Stream Object has Send/Receive operations for transmitting the RTP packets over TCP/IP. User Control ModuleI(UCM) controls Stream Objects via the COREA service objects. QoS Management Modulel(QoSM) has the functions which maintain the QoS of stream service between the UCMs in client and server. As QoS control methexlologies, procedures of resource monitoring, negotiation, and resource adaptation are executed via the interactions among these comiXments mentioned above. For constmcting this QoS integrated platform, we first implemented the modules mentioned above independently, and then, used IDL for defining interfaces among these mexlules so that can support platform independence, interoperability and portability base on COREA. This platform is constructed using OrbixWeb 3.1c following CORBA specification on Solaris 2.5/2.7, Java language, Java, Java Media Framework API 2.0, Mini-SQL1.0.16 and multimedia equipments. As results for verifying this platform functionally, we showed executing results of each module we mentioned above, and a numerical data obtained from QoS control procedures on client and server's GUI, while stream service is executing on our platform.

  • PDF

Circulating Current Control in MMC-HVDC Considering Switching Device Current Capacity under Unbalanced Voltage Conditions (전압 불평형 조건에서 스위칭 소자의 전류용량을 고려한 MMC-HVDC 순환전류 제어기법)

  • Kim, Chun-Sung;Jung, Seung-Hwan;Hwang, Jung-Goo;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.30 no.1
    • /
    • pp.55-65
    • /
    • 2016
  • This paper proposed a new control method which is capable of controlling circulating current considering current capacity of switching device. In the unbalanced voltage conditions, active power and reactive power have double line frequency. Thus, in order to provide active power without ripple, it is necessary to inject the negative sequence current components. However, when the negative current components is injected, it increases the total current flowing in the Arm, and in the Sub-module(SM) the current more than rated is impressed, which leads to destroy the system. Also, in impressing the circulating current reference of each arm, conventional control method impressed applicable $i_{dck}/3$ in the case of balanced voltage conditions. In the case of unbalanced conditions, as arm circulating current of three phase show difference due to the power impressed to each arm, reference of each arm is not identical. In this study, in the case of unbalanced voltage, within permitted current, the control method to decrease the ripple of active power is proposed, through circulating current control and current limitations. This control method has the advantage that calculates the maximum active power possible to generate capacity and impressed the current reference for that much. Also, in impressing circulating current reference, a new control method proposes to impress the reference from calculating active power of each phase. The proposed control method is verified through the simulation results, using the PSCAD/EMTDC.