• Title/Summary/Keyword: SLR

Search Result 217, Processing Time 0.032 seconds

Effect of Maitland Mobilization and Kaltenborn-Evjenth Mobilization on the SLR Angle

  • An, Ho Jung;Kim, Hong Rae;Kim, Bo Kyung
    • Journal of International Academy of Physical Therapy Research
    • /
    • v.7 no.2
    • /
    • pp.1041-1045
    • /
    • 2016
  • The aim of this study was to investigate the effect of Maitland mobilization and Kaltenborn-Evjenth mobilization on the SLR angle. Subjects randomly divided into Kaltenborn-Evjenth group(n=8) and Maitland group(n=7). The mean height, age, body weight was $176.00{\pm}5.10cm$, $22.75{\pm}1.83years$, $72.63{\pm}10.65kg$ respectively in Kaltenborn-Evjenth group. The mean height, age, body weight was $175.00{\pm}5.60cm$, $22.29{\pm}3.68years$, $78.00{\pm}12.36kg$ respectively in Maitland group. Hip joint accessary movements with Grade III or IV were applied depend on the patient's condition to the restricted direction for 1 minute each set, and performed 5 set in a Maitland group. Hip joint anteroposterior gliding with Grade III were applied 60 for 1 minutes each set, and performed 5 set in a Kaltenborn-Evjenth group. The angle of first pain was referred to as P1 and subjects were pointed out that they could not bend the knee anymore, then examiner measure SLR angle. The SLR was significantly increased in the Maitland group compared to the Kaltenborn-Evjenth group after intervention(p<.05). In a within group difference, SLR significantly increased in the both groups(p<.05). These results indicated that Maitland mobilization could be recommended the excellent technique to increase the hip flexion in patient with hip hypo-mobility.

Satellite Laser Ranging System at Geochang Station

  • Lim, Hyung-Chul;Sung, Ki-Pyoung;Yu, Sung-Yeol;Choi, Mansoo;Park, Eunseo;Park, Jong-Uk;Choi, Chul-Sung;Kim, Simon
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.4
    • /
    • pp.253-261
    • /
    • 2018
  • Korea Astronomy and Space Science Institute (KASI) has been developing the space optical and laser tracking (SOLT) system for space geodesy, space situational awareness, and Korean space missions. The SOLT system comprises satellite laser ranging (SLR), adaptive optics (AO), and debris laser tracking (DLT) systems, which share numerous subsystems, such as an optical telescope and tracking mount. It is designed to be capable of laser ranging up to geosynchronous Earth orbit satellites with a laser retro-reflector array, space objects imaging brighter than magnitude 10, and laser tracking low Earth orbit space debris of uncooperative targets. For the realization of multiple functions in a novel configuration, the SOLT system employs a switching mirror that is installed inside the telescope pedestal and feeds the beam path to each system. The SLR and AO systems have already been established at the Geochang station, whereas the DLT system is currently under development and the AO system is being prepared for testing. In this study, the design and development of the SOLT system are addressed and the SLR data quality is evaluated compared to the International Laser Ranging Service (ILRS) tracking stations in terms of single-shot ranging precision. The analysis results indicate that the SLR system has a good ranging performance, to a few millimeters precision. Therefore, it is expected that the SLR system will not only play an important role as a member of the ILRS tracking network, but also contribute to future Korean space missions.

Climate change impact on seawater intrusion in the coastal region of Benin

  • Agossou, Amos;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.157-157
    • /
    • 2022
  • Recent decades have seen all over the world increasing drought in some regions and increasing flood in others. Climate change has been alarming in many regions resulting in degradation and diminution of available freshwater. The effect of global warming and overpopulation associated with increasing irrigated farming and valuable agricultural lands could be particularly disastrous for coastal areas like the one of Benin. The coastal region of Benin is under a heavy demographic pressure and was in the last decades the object of important urban developments. The present study aims to roughly study the general effect of climate change (Sea Level Rise: SLR) and groundwater pumping on Seawater intrusion (SWI) in Benin's coastal region. To reach the main goal of our study, the region aquifer system was built in numerical model using SEAWAT engine from Visual MODFLOW. The model is built and calibrated from 2016 to 2020 in SEAWAT, and using WinPEST the model parameters were optimized for a better performance. The optimized parameters are used for seawater intrusion intensity evaluation in the coastal region of Benin The simulation of the hydraulic head in the calibration period, showed groundwater head drawdown across the area with an average of 1.92m which is observed on the field by groundwater level depletion in hand dug wells mainly in the south of the study area. SWI area increased with a difference of 2.59km2 between the start and end time of the modeling period. By considering SLR due to global warming, the model was stimulated to predict SWI area in 2050. IPCC scenario IS92a simulated SLR in the coastal region of Benin and the average rise is estimated at 20cm by 2050. Using the average rise, the model is run for SWI area estimation in 2050. SWI area in 2050 increased by an average of 10.34% (21.04 km2); this is expected to keep increasing as population grows and SLR.

  • PDF

Crystallization behavior of Cu-base bulk metallic glass in supercooled liquid region during compression and tension (과냉각 액상구간에서 압축.인장시 Cu기 비정질 합금의 결정화 거동)

  • Park, E.S.;Kim, S.H.;Huh, M.Y.;Kim, H.W.;Bae, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.215-217
    • /
    • 2008
  • Crystallization behavior of the bulk metallic glass (BMG) during compression and tension was studied in the supercooled liquid region (SLR). Rod samples of the BMG alloy were produced by consolidating gas atomized powders of $Cu_{54}Zr_{22}Ti_{18}Ni_6$ using spark plasma sintering. The crystallization behavior in these samples was examined by tackling changes in thermal property during heating the samples in DSC. The present BMG alloy was firstly decomposed and then crystallized during annealing in the SLR. The phase decomposition from the original amorphous phase was retarded by the compressive stress, while it was accelerated by the tensile stress.

  • PDF

Gender Classification using Non-Negative Matrix Analysis with Sparse Logistic Regression (Sparse Logistic Regression 기반 비음수 행렬 분석을 통한 성별 인식)

  • Hur, Dong-Cheol;Wallraven, Christian;Lee, Seong-Whan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.373-376
    • /
    • 2011
  • 얼굴 영상에서 구성요소(눈썹, 눈, 코, 입 등)의 존재에 따라 보는 사람의 얼굴 인식 정확도는 큰 영향을 받는다. 이는 인간의 뇌에서 얼굴 정보를 처리하는 과정은 얼굴 전체 영역 뿐만 아니라, 부분적인 얼굴 구성요소의 특징들도 고려함을 말한다. 비음수 행렬 분해(NMF: Non-negative Matrix Factorization)는 이러한 얼굴 영역에서 부분적인 특징들을 잘 표현하는 기저영상들을 찾아내는데 효과적임을 보여주었으나, 각 기저영상들의 중요도는 알 수 없었다. 본 논문에서는 NMF로 찾아진 기저영상들에 대응되는 인코딩 정보를 SLR(Sparse Logistic Regression)을 이용하여 성별 인식에 중요한 부분 영역들을 찾고자 한다. 실험에서는 주성분분석(PCA)과 비교를 통해 NMF를 이용한 기저영상 및 특징 벡터 추출이 좋은 성능을 보여주고, 대표적 이진 분류 알고리즘인 SVM(Support Vector Machine)과 비교를 통해 SLR을 이용한 특징 벡터 선택이 나은 성능을 보여줌을 확인하였다. 또한 SLR로 확인된 각 기저영상에 대한 가중치를 통하여 인식 과정에서 중요한 얼굴 영역들을 확인할 수 있다.

Deformation and crystallization of Cu-base BMG alloy in the supercooled liquid region (과냉각 액상 구간에서 Cu-based BMG 합금의 결정화와 변형 거동)

  • Park, E.S.;Lee, J.H.;Kim, H.J.;Bae, J.C.;Huh, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.143-145
    • /
    • 2007
  • The correlation between crystallization and deformation behavior in the supercooled liquid region (SLR) of a $Cu_{54}Ni_{6}Zr_{22}Ti_{18}$ bulk metallic glass (BMG) alloy is investigated by compression tests, differential scanning calorimetry (DSC), electron energy loss spectrometry (EELS) and high resolution transmission electron microscopy (HRTEM). In the SLR, This BMG alloy was strongly depended on the deformation temperature and the alloy exhibits important change in deformation behavior after a given time which is directly connected to the development of crystallization. Compressive stress impeded decomposition and consequently retarded forming of nano-crystal, which led to enlarge the homogeneous deformation region of the BMG alloy in SLR during compression test.

  • PDF

Evaluating Two Types of Rectangular Secondary Clarifier Performance at Biological Nutrient Removal Facilities (생물학적 고도처리공법에 적용된 두 형태의 장방형 이차침전지 성능 파악)

  • Lee, Byonghi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.561-570
    • /
    • 2013
  • There are two types of rectangular secondary clarifier at biological nutrient removal (BNR) facility to settle MLSS; conventional activated sludge secondary clarifier and Gould Type I clarifier. In this study, the performances of two types at respective biological nutrient removal facility are compared using weekly operational data. Surface Overflow Rate (SOR), Surface Loading Rate (SLR), Sludge Volume Index (SVI), secondary effluent SS concentration are studied. It has found that Gould Type I has 3.5 times less average secondary effluent SS concentration that is 2.4 mg/L than that of conventional activated sludge secondary clarifier. Both SOR and SLR have shown little effect on secondary effluent SS concentrations at Gould Type I clarifier in contrary that SOR affects the secondary effluent SS concentrations at conventional activated sludge rectangular secondary clarifier. From this study, it is recommended that Gould Type I must be considered for secondary clarifier when BNR plant is designed.

A Beeline Routing Protocol for Heterogeneous WSN for IoT-Based Environmental Monitoring

  • Sahitya, G.;Balaji, N.;Naidu, C.D.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.10
    • /
    • pp.67-72
    • /
    • 2022
  • A wireless sensor network (WSN), with its constrained sensor node energy supply, needs an energy-efficient routing technique that maximises overall system performance. When rumours are routed using a random-walk routing algorithm, which is not highly scalable, spiral pathways may appear. Because humans think a straight line is the quickest route between two sites and two straight lines in a plane are likely to intersect, straight-line routing (SLR) constructs a straight path without the aid of geographic information. This protocol was developed for WSNs. As a result, sensor nodes in WSNs use less energy when using SLR. Using comprehensive simulation data, we show that our upgraded SLR systems outperform rumour routing in terms of performance and energy conservation.

Development and Preliminary Performance Analysis of a fast and high precision Tracking Mount for 1m Satellite Laser Ranging (1m급 인공위성 레이저추적 시스템용 고속·고정밀 추적마운트 개발 및 예비 성능분석)

  • Choi, Man-Soo;Lim, Hyung-Chul;Lee, Sang-Jung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.1006-1015
    • /
    • 2016
  • This paper presents preliminary design and performance analysis of a fast and high precision Tracking Mount for 1m Satellite Laser Ranging(SLR) which is development by Korea Astronomy and Space science Institute(KASI). SLR is considered to be the most accurate technique currently available for the precise orbit determination of Earth satellites. The SLR technique measures the time of flight between pulses emitted from laser transmitter and pulses returned from satellites with laser retro-reflector array. It provides millimeter level precision of range measurements between SLR stations and satellites. A fast and high precision Tracking Mount for SLR which is proposed in this research should be capable of day and nighttime laser tracking about the satellites with laser reflectors from 200 km to 36,000 km altitude(geosynchronous orbit). In order to meet this requirement, we performed mechanical design and structural analysis for Tracking Mount. Also we designed the motion control system and conducted pre-performance analysis to obtain good performance results for a fast and high precision Tracking Mount.

Orbit Determination of High-Earth-Orbit Satellites by Satellite Laser Ranging

  • Oh, Hyungjik;Park, Eunseo;Lim, Hyung-Chul;Lee, Sang-Ryool;Choi, Jae-Dong;Park, Chandeok
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.4
    • /
    • pp.271-280
    • /
    • 2017
  • This study presents the application of satellite laser ranging (SLR) to orbit determination (OD) of high-Earth-orbit (HEO) satellites. Two HEO satellites are considered: the Quasi-Zenith Satellite-1 (QZS-1), a Japanese elliptical-inclinedgeosynchronous-orbit (EIGSO) satellite, and the Compass-G1, a Chinese geostationary-orbit (GEO) satellite. One week of normal point (NP) data were collected for each satellite to perform the OD based on the batch least-square process. Five SLR tracking stations successfully obtained 374 NPs for QZS-1 in eight days, whereas only two ground tracking stations could track Compass-G1, yielding 68 NPs in ten days. Two types of station bias estimation and a station data weighting strategy were utilized for the OD of QZS-1. The post-fit root-mean-square (RMS) residuals of the two week-long arcs were 11.98 cm and 10.77 cm when estimating the biases once in an arc (MBIAS). These residuals were decreased significantly to 2.40 cm and 3.60 cm by estimating the biases every pass (PBIAS). Then, the resultant OD precision was evaluated by the orbit overlap method, yielding three-dimensional errors of 55.013 m with MBIAS and 1.962 m with PBIAS for the overlap period of six days. For the OD of Compass-G1, no station weighting strategy was applied, and only MBIAS was utilized due to the lack of NPs. The post-fit RMS residuals of OD were 8.81 cm and 12.00 cm with 49 NPs and 47 NPs, respectively, and the corresponding threedimensional orbit overlap error for four days was 160.564 m. These results indicate that the amount of SLR tracking data is critical for obtaining precise OD of HEO satellites using SLR because additional parameters, such as station bias, are available for estimation with sufficient tracking data. Furthermore, the stand-alone SLR-based orbit solution is consistently attainable for HEO satellites if a target satellite is continuously trackable for a specific period.