• 제목/요약/키워드: SLIC-superpixel

검색결과 4건 처리시간 0.016초

KOMPSAT 영상을 활용한 SLIC 계열 Superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교 (Optimal Parameter Analysis and Evaluation of Change Detection for SLIC-based Superpixel Techniques Using KOMPSAT Data)

  • 정민경;한유경;최재완;김용일
    • 대한원격탐사학회지
    • /
    • 제34권6_3호
    • /
    • pp.1427-1443
    • /
    • 2018
  • 객체 기반 영상 분석은 영상의 복잡도를 낮추는 동시에 영상의 특성을 유지한다는 점에서 픽셀 기반 영상 분석보다 높은 효율성과 정보 활용 가능성을 지닌다. Superpixel은 일반적인 영상 분할보다 작은 영상 단위로 영상을 과분할함으로써 영상 내의 경계를 보다 잘 유지할 수 있다. 이 가운데 SLIC(Simple linear iterative clustering) superpixel 기법은 기존의 기법들보다 높은 품질의 영상 분할 결과를 제시하는 것으로 알려져 있다. 이러한 SLIC 기법의 입력 파라미터인 superpixel의 개수는 영상 분할 결과에 큰 영향을 미침에도 이에 대한 연구는 선행 연구에서 충분히 다루어지지 않았다. 이에 본 연구에서는 KOMPSAT 영상을 이용하여 변화 탐지 활용 연구를 위한 SLIC 계열 superpixel 기법의 최적 파라미터 분석 및 변화 탐지 성능 비교를 수행하였다. 사용된 superpixel 기법은 SLIC, SLIC0(SLIC의 무변수 버전), SNIC(Simple non-iterative clustering) 의 세 가지 기법으로, $5{\times}5$(픽셀)에서 $50{\times}50$(픽셀)의 superpixel 크기 범위에 대해서 superpixel 개수를 지정하여 superpixel 분할 영상을 생성하고 변화 탐지 참조 영상에 대한 재현율을 분석하였다. 이를 통해 얻어진 최적 superpixel 크기를 바탕으로 변화를 탐지하고자 하는 두 영상의 차 영상을 분할한 후 일정 크기의 객체로 clustering하였다. 두 시기(bi-temporal) 영상으로부터 얻어진 공통된 영상경계는 전후 영상에 각각 적용함으로써 각 superpixel의 feature(Lab 색상 차이) 변화를 탐지하였다. 최종적인 변화 탐지 결과는 참조 영상을 통해 그 성능이 분석하였으며, 영상의 과분할 정도가 높지 않더라도 규칙적인 크기와 형태의 superpixel을 통해 높은 변화 탐지 성능을 달성할 수 있음을 확인하였다.

칼라특징공간별 SLIC기반 슈퍼픽셀의 특성비교 (A Comparison of Superpixel Characteristics based on SLIC(Simple Linear Iterative Clustering) for Color Feature Spaces)

  • 이정환
    • 디지털산업정보학회논문지
    • /
    • 제10권4호
    • /
    • pp.151-160
    • /
    • 2014
  • In this paper, a comparison of superpixel characteristics based on SLIC(simple linear iterative clustering) for several color feature spaces is presented. Computer vision applications have come to rely increasingly on superpixels in recent years. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. A superpixel is consist of pixels with similar features such as luminance, color, textures etc. Thus superpixels are more efficient than pixels in case of large scale image processing. Generally superpixel characteristics are described by uniformity, boundary precision and recall, compactness. However previous methods only generate superpixels a special color space but lack researches on superpixel characteristics. Therefore we present superpixel characteristics based on SLIC as known popular. In this paper, Lab, Luv, LCH, HSV, YIQ and RGB color feature spaces are used. Uniformity, compactness, boundary precision and recall are measured for comparing characteristics of superpixel. For computer simulation, Berkeley image database(BSD300) is used and Lab color space is superior to the others by the experimental results.

슈퍼픽셀의 밀집도 및 텍스처정보를 이용한 DBSCAN기반 칼라영상분할 (A Method of Color Image Segmentation Based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) Using Compactness of Superpixels and Texture Information)

  • 이정환
    • 디지털산업정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.89-97
    • /
    • 2015
  • In this paper, a method of color image segmentation based on DBSCAN(Density Based Spatial Clustering of Applications with Noise) using compactness of superpixels and texture information is presented. The DBSCAN algorithm can generate clusters in large data sets by looking at the local density of data samples, using only two input parameters which called minimum number of data and distance of neighborhood data. Superpixel algorithms group pixels into perceptually meaningful atomic regions, which can be used to replace the rigid structure of the pixel grid. Each superpixel is consist of pixels with similar features such as luminance, color, textures etc. Superpixels are more efficient than pixels in case of large scale image processing. In this paper, superpixels are generated by SLIC(simple linear iterative clustering) as known popular. Superpixel characteristics are described by compactness, uniformity, boundary precision and recall. The compactness is important features to depict superpixel characteristics. Each superpixel is represented by Lab color spaces, compactness and texture information. DBSCAN clustering method applied to these feature spaces to segment a color image. To evaluate the performance of the proposed method, computer simulation is carried out to several outdoor images. The experimental results show that the proposed algorithm can provide good segmentation results on various images.

UAV를 활용한 건물철거 지역 변화탐지 (Change Detection of Building Demolition Area Using UAV)

  • 신동윤;김태헌;한유경;김성삼;박제성
    • 대한원격탐사학회지
    • /
    • 제35권5_2호
    • /
    • pp.819-829
    • /
    • 2019
  • 붕괴사고가 발생하였을 시, 피해악화를 방지하기 위해 즉각적인 대응이 필요하며 피해면적 산출, 대응 및 복구 계획 수립 등이 이루어져야 한다. 이를 위해선 피해지역에 대한 정확한 탐지가 이루어져야 한다. 본 연구는 붕괴사고 피해탐지를 위해 신속하고 실시간 대응이 가능한 Unmanned Aerial Vehicle(UAV)를 활용하여 피해지역 탐지를 수행하였다. 연구대상지역은 재개발 사업이 착수되면서 주택 및 아파트의 철거가 진행 중에 있는 울산 중구 B-05 주택재개발 지역으로 선정하였다. 이 지역은 건물의 철거 모습이 붕괴된 상태와 유사하고 철거 전후의 변화가 뚜렷하게 나타나 있으며, 2019년 5월 17일, 7월 9일 각각 UAV 영상을 획득하였다. 건물의 붕괴 전후 영상에서 변화지역을 피해지역으로 판단하였으며, 이를 위해 대표적인 변화탐지 기법인 분광벡터 변화분석 기법(Change Vector Analysis)과 SLIC(Simple Linear Iterative Clustering)기반 superpixel 기법을 이용하였다. 피해지역을 정확하게 탐지하기 위해 비관심지역(식생)을 ExG(Excess Green)를 이용하여 1차적으로 제거해주었고, 변화탐지가 된 객체들 중 면적으로 인한 오탐지가 된 객체들은 최소면적을 계산하여 최종적으로 제거해주었다. 그 결과 변화지역 탐지의 전체결과는 95.39%를 나타냈으며, 추후 붕괴사고에 대한 대응 및 복구대책 및 피해액 산출 등 다양한 자료로 활용할 수 있을 것으로 기대된다.