• Title/Summary/Keyword: SLED

Search Result 94, Processing Time 0.019 seconds

A study on crashworthiness analysis and evaluation of Korea High Speed Train (한국형 고속전철의 충돌안전도 해석 및 평가기술 개발에 관한 연구)

  • Koo Jeong seo;Cho Hyn Jik;Kwon Tae soo
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.686-693
    • /
    • 2003
  • An intensive study was conducted for crashworthiness structural design of recently developed Korean High Speed Train. Two nam design concepts are setup to protect the both crews and passengers from serious injury at heavy collision accidents, and to reduce damages of the train itself at light collision accidents. For occupant protection a collision against a movable 15 tons rigid obstacle at 110 kph and a train-to-train collision at 30 kph were selected as accident scenarios for the heavy collisions based on the train accident investigations. A train-to-train collision at 8 kph was used for the light collisions. The crashworthiness behaviors of KHST have been evaluated numerically using the finite element method. Also, one-dimensional collision analyses show good crashworthy responses in a full rake consist and 3-dimensional shell element analyses do in the front-end structures of the power car. Occupant analyses and sled tests demonstrated that KHST performs well enough to protect occupants under the considered accident scenarios.

  • PDF

A Study of KHST Passenger Safety During Accidents by Computer Simulation Techniques (컴퓨터 시뮬레이션기법을 이용한 고속전철 승객안전도 해석 및 평가)

  • 윤영한;구정서;이재완
    • Proceedings of the KSR Conference
    • /
    • 2002.10a
    • /
    • pp.60-65
    • /
    • 2002
  • The computer simulation techniques were adopted to evaluate effects of seating positions of passenger under the various accident scenarios. The baseline of computer simulation model was tunned by the sled impact tests which conducted under the upright and standard seating positions. This study shows the effect of relative velocity between occupant and struck vehicle while occupant is impacted to a front seat's seatback. Although, base on the current accident scenarios, KHST is performed well enough to protect average adult male occupants. However, Results from the tests indicate small size occupant or higher impact speed may cause sever neck and femur injuries.

  • PDF

Experiments of CRS for Safety Improvement (어린이보호용좌석 효과의 실험적 연구)

  • 이재완;박형원;윤경한;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.79-85
    • /
    • 2003
  • The child restraint system is blown to be excellent to reduce child occupant injury in frontal collisions. The effects of the child restraint system are experimently investigated according to FMVSS 213. A sled simulator is utilized with varying restraint types such as 2point, 3point seat belts, forward-facing types and booster types of child restraint systems. The head and chest injuries for various cases are evaluated based on industrial standards. Also, the maximum displacements of the head and the knees are measured by film analysis. Using the results of the test, the effects of the child restraint system is discussed and reduction of child occupant injury is pursued.

A Safety Assessment by Risk Analysis Method on Wheelchair Occupant in Frontal & Side Impact of Wheelchair Loaded Vehicle (휠체어 탑재 차량의 전방ㆍ측방 충돌시 휠체어 탑승자의 위험도 분석에 의한 안전성평가)

  • 김성민;김성재;강태건;전병호;김경훈;문무성
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.6
    • /
    • pp.179-187
    • /
    • 2004
  • In this study, for a safety assessment of wheelchair occupant in frontal and side impact of wheelchair loaded vehicle, a sled impact test was perfumed. Each test was carried out total 6 times, by using Hybrid III 50th-percentile male dummy in light weight and electric wheelchair. We estimate MC(Motion Criteria), CIC(Combined Injury Criteria), HIC(Head Injury Criteria), HNIC(Head and Neck Injury Criteria) based on measured data. Through this study, we make an assessment of risk analysis of wheelchair occupant and wheelchair. Through this study, safety standard of wheelchair is to be evaluated.

Correlation Analysis between Wheelchair Multi-layer Headrest Foam Properties and Injury Index (Wheelchair Multi-layer headrest foam 특성과 상해지수간 상관관계 분석)

  • Sungwook Cho;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.4
    • /
    • pp.253-258
    • /
    • 2023
  • Although the development of transportation means has realized the right to mobility for the disabled who have difficulty in moving, it can be said that the improvement of the safety of passengers with disabilities that can occur in a car accident is lower than that of ordinary passenger seats. In particular, in the case of a rear-end collision that can occur suddenly, it is a reality that disabled passengers are vulnerable to head and neck injuries. Therefore, in this study, a multi-layer headrest foam that divides the headrest into three parts in the coronal plane was proposed to improve the head and neck injury index of disabled passengers in the vehicle in the event of a rear-end collision of a wheelchair transport vehicle. A range of stress scale factors was selected to give various compressive characteristics of the foam through low-speed rear-end collision analysis through a simple model, and GA optimization was performed by specifying the range as a parameter. Through the optimization result, the phase relationship between HIC and NIC was analyzed according to the compression characteristics of the layers. HIC responded most sensitively to the compression characteristics of the front layer and NIC responded to the compression characteristics of the mid layer, and the compression characteristics of the rear layer showed the lowest. A normal headrest and an optimized multi-layer headrest were placed in the validation model to analyze the low-speed rear-end collision sled test, and HIC and NIC were derived lower in the multi-layer headrest than in the general headrest. The compression behavior of the multi-layer headrest was also clearly shown, and it was verified that the multi-layer headrest was effective in improving the injury index of the head and neck compared to the general headrest.

AERODYNAMIC STUDY ON BOBSLEIGH BUMPER SHAPE (봅슬레이 범퍼 형상에 대한 공력학적 연구)

  • Lee, Y.N.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.37-45
    • /
    • 2015
  • A parametric study on the shapes of bobsleigh bumpers has been performed to reduce the aerodynamic drag. Effects of geometric parameters, such as leading angle of leading bumper, the ratio of minimum width to maximum width of leading bumper, the ratio of leading bumper length to trailing bumper length, trailing angle of trailing bumper, and the ratio of bumper height to installation location of bumper from the bottom of bobsleigh, on the aerodynamic performance of the bobsleigh were estimated using 3-D Reynolds-averaged Navier-Stokes equations. The turbulence was analyzed using the shear stress turbulence model. Reynolds number based on the hydraulic diameter of the external flow channel was in the range of 150,000~1,000,000. Numerical results for drag coefficient were validated compared to experimental data. Ranges of the five geometric parameters were determined according to the rule of Federation Internationale de Bobsleigh et de Tobaganning. The aerodynamic performance of the bobsleigh sled was most sensitive to the leading angle of leading bumper and the ratio of minimum width to maximum width of leading bumper.

A Study on the Improvement of Validation and Application for Slipmeters using Reference Surfaces (표준 바닥재를 이용한 미끄럼 측정기의 검증방법 개선 및 활용방안)

  • Kim, Jung-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.6
    • /
    • pp.73-78
    • /
    • 2013
  • The purpose of this study was to evaluate three kinds of slipmeters (BOT, BPT, English XL) used on-site floor with ASTM F2508 which is comprised of four different standard surfaces(polished granite, glazed porcelain, vinyl composite tile ;VCT, and ceramic tile). ASTM F2508 has two criteria that decide which slipmeter is appropriate or not. The evaluated slipmeters were dreg sled, articulated sturt, and pendulum strike type. The test results revealed that two kinds of slipmeters(BOT, BPT) successfully ranked all four standard surfaces and differentiated among standard surfaces with varying degrees of slipperiness. Nevertheless, the measured value with BOT on the VCT, which was reported as slippery floor in previous study, was higher than its threshold(0.6). Although some slipmeter satisfy two criteria of ASTM F2508, they can underestimate the slip potential. So, another criteria is needed so as to reduce this problem. English XL couldn't properly measure slipperiness under the two kind of floors(glazed porcelain, VCT). So the slider of English XL was modified in order to meet two criteria of ASTM F2508.

Purification and Single Crystal Growth of Molybdenum by Electron Beam Floating Zone Melting (Electron Beam Floating Zone Melting에 의한 몰리브덴의 정련 및 단결정 성장에 관한 연구)

  • 최용삼;지응준
    • Korean Journal of Crystallography
    • /
    • v.3 no.2
    • /
    • pp.85-97
    • /
    • 1992
  • EBFZM( Electron Beam Floating Zone Melting) 법을 이용하여 몰리브덴에서의 금속계 불순물과 침입형 불순물의 정련기구 및 단결정 성장기구를 연구하 였다. Fe, Cr, Co등의 금속계 불순물은 몰리브덴과의 평형증기압의 차이에 따른 불순물의 선택적 증발에 의하여 우수한 정련효과를 나타내며, 몰리브덴보다 응점이 높은 Ta, W는 잘 제거되지 않았다. 한편 대역 정제에 의한 정련효과는 미약함을 확인하였다. EBF ZM은 C,0,N등의 침입형 불순물의 정련에도 효과적 이었다. 본 연구의 모든 조건에서 몰리브덴은 단결정으로 성장하였으며 2차 재결정 epitaxy에 의한 단결 정 성장기구가 제시되었다. 몰리브덴 단결정 내의 전 위밀도는 strain-anneal법에 의한 단결정의 경우보다 높았으며,본 실험의 열처리 조건에서는 변화하지 않았다. The purification and single crystal growth mechanisms of molybdenum were analysed in EBFZM ( electron beam floating zone melting). Metallic impurities of Fe, Cr, Co were purified efficiently but Ta and W were not removed well in this study. It was due to a preferential evaporation of the elements caused by the difference in equillibrium vapor pressure between the elements and molybdenum. The pu- rification effect by zone refining was not significant. The EBFZM also refined the interstitial impurities of C, 0 and N, effectively. The single crystals of molybdenum were grown regardless of the experimental conditions and the secondary recrystallization epitaxy was surge sled as a growth mechanism. The dislocation density in single crystal was higher than that by strain-anneal method, and was not reduced by heat treatments.

  • PDF

Optimization of Seat belt Load Limiter for Crashworthiness (안전벨트 충돌하중특성 최적화)

  • Seo, bo pil;Choi, sung chul;Kim, beom jung;Han, sung jun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.3 no.2
    • /
    • pp.5-10
    • /
    • 2011
  • Under the full frontal crash event, seatbelt system is the most typical and primary restraint device that prevents the second impact between an occupant and vehicle interior parts by limiting the forward motion of an occupant in the vehicle occupant packaging space. Today's restraint systems typically include the three-point seat belt with the pretensioner and the load limiter. A pretensioner preemptively tightens the seat belts removing any slack between a passenger and belt webbing which leads to early restraint of a passenger. After that a load limiter controls level of belt load by releasing the belt webbing to reduce occupant injurys. In this study, load characteristics of load limiters are optimized by the computer simulation with a MADYMO model for a frontal impact against the rigid wall at 56kph and then we suggest performance requirements. We derived optimum load characteristic from the results using four vehicle simulation models represented by the vehicle. Based on the results, we suggest the performance from the results of the second optimization using the simulation considering the design and the standardization. Finally, the performance requirements is verified by the sled tests including the load limiter device for the full vehicle condition.

측면 충돌시 Restraint system의 효과에 관한 연구 -Seat wing의 효과-

  • 이창민;오세민
    • Proceedings of the ESK Conference
    • /
    • 1995.10a
    • /
    • pp.91-100
    • /
    • 1995
  • 자동차의 안전도는 전통적으로 정면 충돌시 승객의 보호 정도를 가지고 비 교 된다. 그러나 근래에 와서는 다양한 사고에 의한 승객의 피해를 볼 때 정면 과 더불어 측면 충돌시의 피해를 무시할 수 없는 상태에 이르렀다. sled tests 등을 통해서 정면 뿐만 아니라 측면 충돌의 영향도 파악하고 있으나 정면 충돌보다 측면 충돌에 대해 승개 보호 장치의 개발이 미흡한 것이 현실이다. 본 연구에서는 현실적으로 보다 효과적인 occupant (운전자 및 승객) restraint system을 computer 모의 실험을 통해서 제안하고자 하였다. 기존의 안전시스템인 lap/shoulder belt system과 Air cushion에 의한 실험은 다각도로 연구되었다. 그러나 측면 충돌에서 Air Bag에 의한 충돌 감소 영향은 정면 충돌에 비해 적어지게 되어 상체 측면 보호 장치가 필요하게 된다. 본 연구에서는 운전자의 lap/shoulder belt system과 Air Bag에 의해 구속되는 dummy를 가지고 다양한 측면 충돌 각도 (0 .deg. , 15 .deg. , 30 .deg. , 45 .deg. , 70 .deg. )에서 실험이 수행되었다. 또한 각 충돌각에 대해 기존 Restraint System에 상체 측면 보호 장치(seat wing)를 포함하여 실험을 수행 하였다. 이에 대한 각각의 영향, 그리고 승객 손상도 분석 및 평가를 통하여 보안된 측면 충돌 보호 restraint system의 필요성과 그 효과를 제시하고자 한다. 실험결과 에 의하면 정면보다 측면에서 충돌하였을 경우 보조 구속 시스템인 seat wing으로 인 해 측면보호는 물론 occupant는 정면으로 나가게 개선되어 구속 시스템으로써의 이점이 확대되고 shoulder blet 또는 dummy의 감속을 통제하는 Air Bag의 잠재적인 이점이 더욱 확대되었음을 보여주고 있다. 그러나 design 단계에서 편안함, 안락감 등의 문제들과, 다른 실용적인 면에 대한 계속적인 연구가 필요하다.

  • PDF