• Title/Summary/Keyword: SLAM (simultaneous localization and map building)

Search Result 23, Processing Time 0.031 seconds

3D Simultaneous Localization and Map Building (SLAM) using a 2D Laser Range Finder based on Vertical/Horizontal Planar Polygons (2차원 레이저 거리계를 이용한 수직/수평 다각평면 기반의 위치인식 및 3차원 지도제작)

  • Lee, Seungeun;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1153-1163
    • /
    • 2014
  • An efficient 3D SLAM (Simultaneous Localization and Map Building) method is developed for urban building environments using a tilted 2D LRF (Laser Range Finder), in which a 3D map is composed of perpendicular/horizontal planar polygons. While the mobile robot is moving, from the LRF scan distance data in each scan period, line segments on the scan plane are successively extracted. We propose an "expected line segment" concept for matching: to add each of these scan line segments to the most suitable line segment group for each perpendicular/horizontal planar polygon in the 3D map. After performing 2D localization to determine the pose of the mobile robot, we construct updated perpendicular/horizontal infinite planes and then determine their boundaries to obtain the perpendicular/horizontal planar polygons which constitute our 3D map. Finally, the proposed SLAM algorithm is validated via extensive simulations and experiments.

Simultaneous Localization & Map-building of Mobile Robot in the Outdoor Environments by Vision-based Compressed Extended Kalman Filter (Compressed Extended Kalman 필터를 이용한 야외 환경에서 주행 로봇의 위치 추정 및 지도 작성)

  • Yoon Suk-June;Choi Hyun-Do;Park Sung-Kee;Kim Soo-Hyun;Kwak Yoon-Keun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.6
    • /
    • pp.585-593
    • /
    • 2006
  • In this paper, we propose a vision-based simultaneous localization and map-building (SLAM) algorithm. SLAM problem asks the location of mobile robot in the unknown environments. Therefore, this problem is one of the most important processes of mobile robots in the outdoor operation. To solve this problem, Extended Kalman filter (EKF) is widely used. However, this filter requires computational power (${\sim}O(N)$, N is the dimension of state vector). To reduce the computational complexity, we applied compressed extended Kalman filter (CEKF) to stereo image sequence. Moreover, because the mobile robots operate in the outdoor environments, we should estimate full d.o.f.s of mobile robot. To evaluate proposed SLAM algorithm, we performed the outdoor experiments. The experiment was performed by using new wheeled type mobile robot, Robhaz-6W. The performance results of CEKF SLAM are presented.

Development of Map Building Algorithm for Mobile Robot by Using RFID (모바일 로봇에서 RFID를 이용한 지도작성 알고리즘 개발)

  • Kim, Si-Seup;Seon, Jeong-An;Kee, Chang-Doo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.133-138
    • /
    • 2011
  • RFID system can be used to improve object recognition, map building and localization for robot area. A novel method of indoor navigation system for a mobile robot is proposed using RFID technology. The mobile robot With a RFID reader and antenna is able to find what obstacles are located where in circumstance and can build the map similar to indoor circumstance by combining RFID information and distance data obtained from sensors. Using the map obtained, the mobile robot can avoid obstacles and finally reach the desired goal by $A^*$ algorithm. 3D map which has the advantage of robot navigation and manipulation is able to be built using z dimension of products. The proposed robot navigation system is proved to apply for SLAM and path planning in unknown circumstance through numerous experiments.

Localization and 3D Polygon Map Building Method with Kinect Depth Sensor for Indoor Mobile Robots (키넥트 거리센서를 이용한 실내 이동로봇의 위치인식 및 3 차원 다각평면 지도 작성)

  • Gwon, Dae-Hyeon;Kim, Byung-Kook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.745-752
    • /
    • 2016
  • We suggest an efficient Simultaneous Localization and 3D Polygon Map Building (SLAM) method with Kinect depth sensor for mobile robots in indoor environments. In this method, Kinect depth data is separated into row planes so that scan line segments are on each row plane. After grouping all scan line segments from all row planes into line groups, a set of 3D Scan polygons are fitted from each line group. A map matching algorithm then figures out pairs of scan polygons and existing map polygons in 3D, and localization is performed to record correct pose of the mobile robot. For 3D map-building, each 3D map polygon is created or updated by merging each matched 3D scan polygon, which considers scan and map edges efficiently. The validity of the proposed 3D SLAM algorithm is revealed via experiments.

SLAM based on feature map for Autonomous vehicle (자율주행 장치를 위한 특징 맵 기반 SLAM)

  • Kim, Jung-Min;Jung, Sung-Young;Jeon, Tae-Ryong;Kim, Sung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.7
    • /
    • pp.1437-1443
    • /
    • 2009
  • This paper is presented an simultaneous localization and mapping (SLAM) algorithm using ultrasonic for robot and electric compass, encoder, and gyro. Generally, localization based upon electric compass, encoder, and gyro can be measured just local position in workspace. However, actual robot must need an information of the absolute position in workspace to perform its mission, Absolute position in workspace could be calculated using SLAM algorithm. To implement SLAM in this paper, a map is built using ultrasonic sensor and hierarchical map building method. And then, we the map will be transformed into a feature map. The absolute position could be calculated using the feature map and map mapping method. As a test bed, we designed and construct an autonomous robot and showed the experimental performance of the proposed SLAM algorithm based on feature map. Experimental result, we verified that robot can found all absolute position on experiments using proposed SLAM algorithm.

Analysis of Applicability of Visual SLAM for Indoor Positioning in the Building Construction Site (Visual SLAM의 건설현장 실내 측위 활용성 분석)

  • Kim, Taejin;Park, Jiwon;Lee, Byoungmin;Bae, Kangmin;Yoon, Sebeen;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.47-48
    • /
    • 2022
  • The positioning technology that measures the position of a person or object is a key technology to deal with the location of the real coordinate system or converge the real and virtual worlds, such as digital twins, augmented reality, virtual reality, and autonomous driving. In estimating the location of a person or object at an indoor construction site, there are restrictions that it is impossible to receive location information from the outside, the communication infrastructure is insufficient, and it is difficult to install additional devices. Therefore, this study tested the direct sparse odometry algorithm, one of the visual Simultaneous Localization and Mapping (vSLAM) that estimate the current location and surrounding map using only image information, at an indoor construction site and analyzed its applicability as an indoor positioning technology. As a result, it was found that it is possible to properly estimate the surrounding map and the current location even in the indoor construction site, which has relatively few feature points. The results of this study can be used as reference data for researchers related to indoor positioning technology for construction sites in the future.

  • PDF

SLAM of a Mobile Robot using Thinning-based Topological Information

  • Lee, Yong-Ju;Kwon, Tae-Bum;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.577-583
    • /
    • 2007
  • Simultaneous Localization and Mapping (SLAM) is the process of building a map of an unknown environment and simultaneously localizing a robot relative to this map. SLAM is very important for the indoor navigation of a mobile robot and much research has been conducted on this subject. Although feature-based SLAM using an Extended Kalman Filter (EKF) is widely used, it has shortcomings in that the computational complexity grows in proportion to the square of the number of features. This prohibits EKF-SLAM from operating in real time and makes it unfeasible in large environments where many features exist. This paper presents an algorithm which reduces the computational complexity of EKF-SLAM by using topological information (TI) extracted through a thinning process. The global map can be divided into local areas using the nodes of a thinning-based topological map. SLAM is then performed in local instead of global areas. Experimental results for various environments show that the performance and efficiency of the proposed EKF-SLAM/TI scheme are excellent.

Indoor Single Camera SLAM using Fiducial Markers (한 대의 카메라와 Fiducial 마커를 이용한 SLAM)

  • Lim, Hyon;Yang, Ji-Hyuck;Lee, Young-Sam;Kim, Jin-Geol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.353-364
    • /
    • 2009
  • In this paper, a SLAM (Simultaneous Localization and Mapping) method using a single camera and planar fiducial markers is proposed. Fiducial markers are planar patterns that are mounted on the ceiling or wall. Each fiducial marker has a unique hi-tonal identification pattern with square outlines. It can be printed on paper to reduce cost or it can be painted using retro-reflective paint in order to make invisible and prevent undesirable visual effects. Existing localization methods using artificial landmarks have the disadvantage that landmark locations must be known a priori. In contrast, the proposed method can build a map and estimate robot location even if landmark locations are not known a priori. Hence, it reduces installation time and setup cost. The proposed method works good even when only one fiducial marker is seen at a scene. We perform computer simulation to evaluate proposed method.

Topological SLAM Based on Voronoi Diagram and Extended Kalman Filter

  • Choi, Chang-Hyuk;Song, Jae-Bok;Kim, Mun-Sang;Chung, Woo-Jin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.174-179
    • /
    • 2003
  • Through the simultaneous localization and map building (SLAM) technique, a robot can create maps about its unknown environment while it continuously localizes its position. Grid maps and feature maps have been widely used for SLAM together with application of probability methods and POMDP (partially observed Markov decision process). But this approach based on grid maps suffers from enormous computational burden. Topological maps, however, have drawn more attention these days because they are compact, provide natural interfaces, and are easily applicable to path planning in comparison with grid maps. Some topological SLAM techniques like GVG (generalized Voronoi diagram) were introduced, but it enables the robot to decide only whether the current position is part of GVG branch or not in the GVG algorithm. In this paper, therefore, to overcome these problems, we present a method for updating a global topological map from the local topological maps. These local topological maps are created through a labeled Voronoi diagram algorithm from the local grid map built based on the sensor information at the current robot position. And the nodes of a local topological map can be utilized as the features of the environment because it is robust in light of visibility problem. The geometric information of the feature is applied to the extended Kalman filter and the SLAM in the indoor environment is accomplished. A series of simulations have been conducted using a two-wheeled mobile robot equipped with a laser scanner. It is shown that the proposed scheme can be applied relatively well.

  • PDF

ARVisualizer : A Markerless Augmented Reality Approach for Indoor Building Information Visualization System

  • Kim, Albert Hee-Kwan;Cho, Hyeon-Dal
    • Spatial Information Research
    • /
    • v.16 no.4
    • /
    • pp.455-465
    • /
    • 2008
  • Augmented reality (AR) has tremendous potential in visualizing geospatial information, especially on the actual physical scenes. However, to utilize augmented reality in mobile system, many researches have undergone with GPS or ubiquitous marker based approaches. Although there are several papers written with vision based markerless tracking, previous approaches provide fairly good results only in largely under "controlled environments." Localization and tracking of current position become more complex problem when it is used in indoor environments. Many proposed Radio Frequency (RF) based tracking and localization. However, it does cause deployment problems of large RF-based sensors and readers. In this paper, we present a noble markerless AR approach for indoor (possible outdoor, too) navigation system only using monoSLAM (Monocular Simultaneous Localization and Map building) algorithm to full-fill our grand effort to develop mobile seamless indoor/outdoor u-GIS system. The paper briefly explains the basic SLAM algorithm, then the implementation of our system.

  • PDF