• Title/Summary/Keyword: SLAM (Simultaneous Localization And Mapping)

Search Result 121, Processing Time 0.027 seconds

Geographical Group-based FastSLAM Algorithm for Maintenance of the Diversity of Particles (파티클 다양성 유지를 위한 지역적 그룹 기반 FastSLAM 알고리즘)

  • Jang, June-Young;Ji, Sang-Hoon;Park, Hong Seong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.907-914
    • /
    • 2013
  • A FastSLAM is an algorithm for SLAM (Simultaneous Localization and Mapping) using a Rao-Blackwellized particle filter and its performance is known to degenerate over time due to the loss of particle diversity, mainly caused by the particle depletion problem in the resampling phase. In this paper, the GeSPIR (Geographically Stratified Particle Information-based Resampling) technique is proposed to solve the particle depletion problem. The proposed algorithm consists of the following four steps : the first step involves the grouping of particles divided into K regions, the second obtaining the normal weight of each region, the third specifying the protected areas, and the fourth resampling using regional equalization weight. Simulations show that the proposed algorithm obtains lower RMS errors in both robot and feature positions than the conventional FastSLAM algorithm.

Visual-Attention Using Corner Feature Based SLAM in Indoor Environment (실내 환경에서 모서리 특징을 이용한 시각 집중 기반의 SLAM)

  • Shin, Yong-Min;Yi, Chu-Ho;Suh, Il-Hong;Choi, Byung-Uk
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.49 no.4
    • /
    • pp.90-101
    • /
    • 2012
  • The landmark selection is crucial to successful perform in SLAM(Simultaneous Localization and Mapping) with a mono camera. Especially, in unknown environment, automatic landmark selection is needed since there is no advance information about landmark. In this paper, proposed visual attention system which modeled human's vision system will be used in order to select landmark automatically. The edge feature is one of the most important element for attention in previous visual attention system. However, when the edge feature is used in complicated indoor area, the response of complicated area disappears, and between flat surfaces are getting higher. Also, computation cost increases occurs due to the growth of the dimensionality since it uses the responses for 4 directions. This paper suggests to use a corner feature in order to solve or prevent the problems mentioned above. Using a corner feature can also increase the accuracy of data association by concentrating on area which is more complicated and informative in indoor environments. Finally, this paper will prove that visual attention system based on corner feature can be more effective in SLAM compared to previous method by experiment.

Photorealistic Real-Time Dense 3D Mesh Mapping for AUV (자율 수중 로봇을 위한 사실적인 실시간 고밀도 3차원 Mesh 지도 작성)

  • Jungwoo Lee;Younggun Cho
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.2
    • /
    • pp.188-195
    • /
    • 2024
  • This paper proposes a photorealistic real-time dense 3D mapping system that utilizes a neural network-based image enhancement method and mesh-based map representation. Due to the characteristics of the underwater environment, where problems such as hazing and low contrast occur, it is hard to apply conventional simultaneous localization and mapping (SLAM) methods. At the same time, the behavior of Autonomous Underwater Vehicle (AUV) is computationally constrained. In this paper, we utilize a neural network-based image enhancement method to improve pose estimation and mapping quality and apply a sliding window-based mesh expansion method to enable lightweight, fast, and photorealistic mapping. To validate our results, we utilize real-world and indoor synthetic datasets. We performed qualitative validation with the real-world dataset and quantitative validation by modeling images from the indoor synthetic dataset as underwater scenes.

The Development of a Map Building Algorithm using LADAR for Unmanned Ground Vehicle (레이저 레이다를 이용한 무인차량의 지도생성 알고리즘 개발)

  • Lee, Jeong-Yeob;Lee, Sang-Hoon;Kim, Jung-Ha;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1246-1253
    • /
    • 2009
  • To be high efficient for a navigation of unmanned ground vehicle, it must be able to distinguish between safe and hazardous regions in its immediate environment. We present an advanced method using laser range finder for building global 2D digital maps that include environment information. Laser range finder is used for mapping of obstacles and driving environment in the 2D laser plane. Rotary encoders are used for localization of UGV. The main contributions of this research are the development of an algorithm for global 2D map building and it will turn a UGV navigation based on map matching into a possibility. In this paper, a map building algorithm will be introduced and an assessment of algorithm reliability is judged at an each environment.

Development of 3D Point Cloud Mapping System Using 2D LiDAR and Commercial Visual-inertial Odometry Sensor (2차원 라이다와 상업용 영상-관성 기반 주행 거리 기록계를 이용한 3차원 점 구름 지도 작성 시스템 개발)

  • Moon, Jongsik;Lee, Byung-Yoon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.3
    • /
    • pp.107-111
    • /
    • 2021
  • A 3D point cloud map is an essential elements in various fields, including precise autonomous navigation system. However, generating a 3D point cloud map using a single sensor has limitations due to the price of expensive sensor. In order to solve this problem, we propose a precise 3D mapping system using low-cost sensor fusion. Generating a point cloud map requires the process of estimating the current position and attitude, and describing the surrounding environment. In this paper, we utilized a commercial visual-inertial odometry sensor to estimate the current position and attitude states. Based on the state value, the 2D LiDAR measurement values describe the surrounding environment to create a point cloud map. To analyze the performance of the proposed algorithm, we compared the performance of the proposed algorithm and the 3D LiDAR-based SLAM (simultaneous localization and mapping) algorithm. As a result, it was confirmed that a precise 3D point cloud map can be generated with the low-cost sensor fusion system proposed in this paper.

A Study on 3D Indoor mapping for as-built BIM creation by using Graph-based SLAM (준공 BIM 구축을 위한 Graph-based SLAM 기반의 실내공간 3차원 지도화 연구)

  • Jung, Jaehoon;Yoon, Sanghyun;Cyrill, Stachniss;Heo, Joon
    • Korean Journal of Construction Engineering and Management
    • /
    • v.17 no.3
    • /
    • pp.32-42
    • /
    • 2016
  • In Korea, the absence of BIM use in existing civil structures and buildings is driving a demand for as-built BIM. As-built BIMs are often created using laser scanners that provide dense 3D point cloud data. Conventional static laser scanning approaches often suffer from limitations in their operability due to the difficulties in moving the equipment, the selection of scanning location, and the requirement of placing targets or extracting tie points for registration of each scanned point cloud. This paper aims at reducing the manual effort using a kinematic 3D laser scanning system based on graph-based simultaneous localization and mapping (SLAM) for continuous indoor mapping. The robotic platform carries three 2D laser scanners: the front scanner is mounted horizontally to compute the robot's trajectory and to build the SLAM graph; the other two scanners are mounted vertically to scan the profiles of surrounding environments. To reduce the accumulated error in the trajectory of the platform through loop closures, the graph-based SLAM system incorporates AdaBoost loop closure approach, which is particularly suitable for the developed multi-scanner system providing more features than the single-scanner system for training. We implemented the proposed method and evaluated it in two indoor test sites. Our experimental results show that the false positive rate was reduced by 13.6% and 7.9% for the two dataset. Finally, the 2D and 3D mapping results of the two test sites confirmed the effectiveness of the proposed graph-based SLAM.

An Embedded Solution for Fast Navigation and Precise Positioning of Indoor Mobile Robots by Floor Features (바닥 특징점을 사용하는 실내용 정밀 고속 자율 주행 로봇을 위한 싱글보드 컴퓨터 솔루션)

  • Kim, Yong Nyeon;Suh, Il Hong
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.293-300
    • /
    • 2019
  • In this paper, an Embedded solution for fast navigation and precise positioning of mobile robots by floor features is introduced. Most of navigation systems tend to require high-performance computing unit and high quality sensor data. They can produce high accuracy navigation systems but have limited application due to their high cost. The introduced navigation system is designed to be a low cost solution for a wide range of applications such as toys, mobile service robots and education. The key design idea of the system is a simple localization approach using line features of the floor and delayed localization strategy using topological map. It differs from typical navigation approaches which usually use Simultaneous Localization and Mapping (SLAM) technique with high latency localization. This navigation system is implemented on single board Raspberry Pi B+ computer which has 1.4 GHz processor and Redone mobile robot which has maximum speed of 1.1 m/s.

Three-dimensional Map Construction of Indoor Environment Based on RGB-D SLAM Scheme

  • Huang, He;Weng, FuZhou;Hu, Bo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.2
    • /
    • pp.45-53
    • /
    • 2019
  • RGB-D SLAM (Simultaneous Localization and Mapping) refers to the technology of using deep camera as a visual sensor for SLAM. In view of the disadvantages of high cost and indefinite scale in the construction of maps for laser sensors and traditional single and binocular cameras, a method for creating three-dimensional map of indoor environment with deep environment data combined with RGB-D SLAM scheme is studied. The method uses a mobile robot system equipped with a consumer-grade RGB-D sensor (Kinect) to acquire depth data, and then creates indoor three-dimensional point cloud maps in real time through key technologies such as positioning point generation, closed-loop detection, and map construction. The actual field experiment results show that the average error of the point cloud map created by the algorithm is 0.0045m, which ensures the stability of the construction using deep data and can accurately create real-time three-dimensional maps of indoor unknown environment.

Extraction of Different Types of Geometrical Features from Raw Sensor Data of Two-dimensional LRF (2차원 LRF의 Raw Sensor Data로부터 추출된 다른 타입의 기하학적 특징)

  • Yan, Rui-Jun;Wu, Jing;Yuan, Chao;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.3
    • /
    • pp.265-275
    • /
    • 2015
  • This paper describes extraction methods of five different types of geometrical features (line, arc, corner, polynomial curve, NURBS curve) from the obtained raw data by using a two-dimensional laser range finder (LRF). Natural features with their covariance matrices play a key role in the realization of feature-based simultaneous localization and mapping (SLAM), which can be used to represent the environment and correct the pose of mobile robot. The covariance matrices of these geometrical features are derived in detail based on the raw sensor data and the uncertainty of LRF. Several comparison are made and discussed to highlight the advantages and drawbacks of each type of geometrical feature. Finally, the extracted features from raw sensor data obtained by using a LRF in an indoor environment are used to validate the proposed extraction methods.

Comparison of Characteristics of Drone LiDAR for Construction of Geospatial Information in Large-scale Development Project Area (대규모 개발지역의 공간정보 구축을 위한 드론 라이다의 특징 비교)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.768-773
    • /
    • 2020
  • In large-scale land development for the rational use and management of national land resources, the use of geospatial information is essential for the efficient management of projects. Recently, drone LiDAR (Light Detection And Ranging) has attracted attention as an effective geospatial information construction technique for large-scale development areas, such as housing site construction and open-pit mines. Drone LiDAR can be classified into a method using SLAM (Simultaneous Localization And Mapping) technology and a GNSS (Global Navigation Satellite System)/IMU (Inertial Measurement Unit) method. On the other hand, there is a lack of analytical research on the application of drone LiDAR or the characteristics of each method. Therefore, in this study, data acquisition, processing, and analysis using SLAM and GNSS/IMU type drone LiDAR were performed, and the characteristics and utilization of each were evaluated. As a result, the height direction accuracy of drone LiDAR was -0.052~0.044m, which satisfies the allowable accuracy of geospatial information for mapping. In addition, the characteristics of each method were presented through a comparison of data acquisition and processing. Geospatial information constructed through drone LiDAR can be used in several ways, such as measuring the distance, area, and inclination. Based on such information, it is possible to evaluate the safety of large-scale development areas, and this method is expected to be utilized in the future.