• Title/Summary/Keyword: SLAB model

Search Result 659, Processing Time 0.031 seconds

An Improved Finite Element Modeling Technique for Prestressed Concrete Girder Bridges (PSC보 교량의 유한요소 모델링방법에 관한 연구)

  • 김광수;박선규;김형열
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.33-40
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity of partially prestressed concrete girder bridges. Based on the finite element method of analysis, shell and frame elements are used to model the slab and girders of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab an mid-plane of girder. This paper also includes the comparision of three different equations that are used in the calculation of effective moment of inertia for the partially prestressed concrete girders. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. A good agreement is achieved between the numerical solutions by using the proposed method load test results.

Analysis of PSC Beam Bridges Strengthened by External Post-Tensioning Method (외부 후긴장된 PSC보 교량의 해석방법)

  • 김광수;박선규;김형열;전찬기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.399-404
    • /
    • 1999
  • An improved finite element modeling technique is proposed for the assessment of load carrying capacity partilly prestressed concrete beam bridges. Based on the finite element method of analysis, shell and frame elements are utilized to model the slab and beams of the superstructure, respectively. In the modeling of superstructure, the emphasis is placed on the use of rigid link between the middle surface of slab and mid-plane of beam. This paper also includes the comparision of three different equations that used in the calculation of effective moment of inertia for the partially prestressed concrete beams. Numerical analysis is performed for the unstrengthened and strengthened bridges. The obtained results are compared with those of load test for a prototype bridge. Agreement with the numerical solutions by using the proposed method and load test results is generally excellent.

  • PDF

Finite element modeling of slab-on-beam concrete bridge superstructures

  • Patrick, Michael D.;Huo, X. Sharon
    • Computers and Concrete
    • /
    • v.1 no.3
    • /
    • pp.355-369
    • /
    • 2004
  • This paper presents a study of four finite element techniques that can be used to model slabon-beam highway bridges. The feasibility and correctness of each modeling technique are examined by applying them to a prestressed concrete I-beam bridge and a prestressed concrete box-beam bridge. Other issues related to bridge modeling such as torsional constant, support conditions, and quality control check are studied in detail and discussed in the paper. It is found that, under truck loading, the bending stress distribution in a beam section depends on the modeling technique being utilized. It is observed that the behavior of the bridge superstructure can be better represented when accounting for composite behavior between the supporting beams and slab.

The study for performance of isolators supported floating slab track (플로팅 슬래브궤도용 방진재의 성능에 관한 연구)

  • Kim, Jin-Ho;Cha, Hyo-Jung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.569-574
    • /
    • 2007
  • The paper presents an application of the model to a practical problem of train-induced vibrations. The aim of this study is to vertify for performance of isolators which was developed in KRRI supported floating slab track. Laboratory tests on developed isolations show that the energy dissipation, under cyclic loading of constant amplitude, can be suitably represented by a combination of a viscous and a hysteretic damping. Also, other tests for structural performance are carried out, such as elastic material test, compression test and so on. The specimen, $400{\times}400{\times}300mm$, is placed between two stiff steel plates designed to uniformly distribute the compression stress on the surface.

  • PDF

The Analysis of Width Deformation Behavior in Thin Slab Casting and Rolling Process (박슬라브 열간압연공정에서 폭거동해석)

  • 박해두;김형전;송길호
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.03a
    • /
    • pp.249-252
    • /
    • 1997
  • Mini-mill process which is one of the new steel making process to be able to produce the hot rolled strip by thin slab caster, was completed in the kwangyang steel work. The new process was constructed liquid core deduction, tandem reduction unit, induction heater, coil box and finishing mill to be varied width. Therefore, in oder to make sure of target strip width, analysis of actual plant data was done to fine out amount of width deviation. Finally, the predication system of width in the mini-mill process was developed to included temperature caculation model.

  • PDF

A Seismic Design of RC Underground Subway Structure (지중 RC 도시지하철고 구조물의 내진설계)

  • Jeong, Jae-Pyoung;Im, Tong-Won;Lee, Seong-Lo;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.357-362
    • /
    • 2000
  • This Paper presents dynamic analysis of underground R/C Subway Structure, subjected to seismic actions. Earthquakes brought serious damage to RC subway Structure. Foe studying the collapse mechanism of underground RC Subway, seismic of a subway station is simulated in using FEM program ASP2000 of two-dimension based on the path dependent RC elastic model, soil foundation and interfacial models. The shear failure of intermediate vertical columns is founds to be the major cause of the structural collapse. According to FEM simulation of the failure mechanism, it is considered that the RC column would lose axial load carrying capacity after the occurrence of the localized diagonal shear cracks , and sudden failure of the outer frame would be followed. Specially, the shear stress in the middle slab reaches maximum shear capacity. So, the Structure would fail in the middle slab as a result of erasing the vertical ground motion computation.

  • PDF

Model Sensitivity Study on Various Ambient Meteorological Conditions Using SLAB for Hazardous Chemical Accidents (유해화학물질 사고시 활용되는 초기확산모델(SLAB)의 기상 민감도 수치실험)

  • Yu, Jeong-A;Hwang, Man-Sik;Cheon, Gwang-Su;Gwon, Yong-Ho;Mun, Ji-Yeong;Lee, Jin-Seon;Yun, Lee;Park, Chun-Hwa;Park, Yeon-Sin;Sin, Seong-Il;Jo, Mun-Sik;Kim, Seong-Beom;Kim, Min-Jeong;Jeong, Yeong-Hui;Choe, Gwang-Su
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2006.10a
    • /
    • pp.101-102
    • /
    • 2006
  • PDF

Acoustic Characteristics of Sand Sediment Slab with Water- and Air-filled Pore

  • Roh Heui-Seol;Lee Kang Il;Yoon Suk Wang
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.223-226
    • /
    • 2001
  • Acoustic pressure transmission coefficient and phase velocity are measured as the functions of water porosity and air porosity in sand sediment slabs with water- and air-filled pores. Pores in the sand sediment slab we modeled as the structure of circular cylindrical tube shape filled with water and air. The first kind(fast) wave and second kind (slow) wave, identified by Biot, in the solid and fluid mixed medium are affected by the presence of water and air pores. Acoustic characteristics of such porous medium in water are also theoretically investigated in terms of the modified Biot-Attenborough (MBA) model, which uses the separate treatment of viscosity effect and thermal effect in non-rigid porous medium with water- and air-filed pores. The information on the fast waves introduces new concepts of the generalized tortuosity factor and dynamic shape factor.

  • PDF

A Simplified Three-Dimensional Finite Element Analysis of the Non-axisymmetric Extrusion Process (비축대칭 압출 공정의 근사 3차원 유한 요소 해석)

  • Shin, H.W.;Kim, D.W.;Kim, N.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.52-65
    • /
    • 1992
  • In this study a new simplified three-dimensional numerical method and the associated computer program have been developed to simulate the non-axisymmetric extrusion processes. The two-dimensional rigid-plastic finite element method under the generalized plane-strain condition is combined with the slab method. To define the die geometry for a non-axisymmetric extrusion. area mapping technique was used. Streamlined die surface was used to minimize the total extrusion pressure. Extrusion of square, hexagonal and 'T' section from round billet have been simulated and experimented with a model material. The computed results were in good agreement with the experiments in cross-sectional grid distortion. Computational results will be valuable for designing tool geometries and corresponding processes.

  • PDF

Finite strip method in probabilistic fatigue analysis of steel bridges

  • Li, W.C.;Cheung, M.S.
    • Steel and Composite Structures
    • /
    • v.2 no.6
    • /
    • pp.429-440
    • /
    • 2002
  • A finite strip method is developed for fatigue reliability analysis of steel highway bridges. Flat shell strips are employed to model concrete slab and steel girders, while a connection strip is formed using penalty function method to take into account eccentricity of girder top flange. At each sampling point with given slab thickness and modulus ratio, a finite strip analysis of the bridge under fatigue truck is performed to calculate stress ranges at fatigue-prone detail, and fatigue failure probability is evaluated following the AASHTO approach or the LEFM approach. After the failure probability is integrated over all sampling points, fatigue reliability of the bridge is determined.