• Title/Summary/Keyword: SLAB model

Search Result 659, Processing Time 0.033 seconds

Probabilistic Analysis of Reinforced Concrete Beam and Slab Deflections Using Monte Carlo Simulation

  • Choi, Bong-Seob;Kwon, Young-Wung
    • KCI Concrete Journal
    • /
    • v.12 no.2
    • /
    • pp.11-21
    • /
    • 2000
  • It is not easy to correctly predict deflections of reinforced concrete beams and one-way slabs due to the variability of parameters involved in the calculation of deflections. Monte Carlo simulation is used to assess the variability of deflections with known statistical data and probability distributions of variables. A deterministic deflection value is obtained using the layered beam model based on the finite element approach in which a finite element is divided into a number of layers over the depth. The model takes into account nonlinear effects such as cracking, creep and shrinkage. Statistical parameters were obtained from the literature. For the assessment of variability of deflections, 12 cases of one-way slabs and T-beams are designed on the basis of ultimate moment capacity. Several results of a probabilistic study are presented to indicate general trends indicated by results and demonstrate the effect of certain design parameters on the variability of deflections. From simulation results, the variability of deflections relies primarily on the ratio of applied moment to cracking moment and the corre-sponding reinforcement ratio.

  • PDF

The influence of load pulse shape on pressure-impulse diagrams of one-way RC slabs

  • Wang, Wei;Zhang, Duo;Lu, Fangyun
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.363-381
    • /
    • 2012
  • This study is aimed at providing an efficient analytical model to obtain pressure- impulse diagram of one-way reinforced concrete slabs subjected to different shapes of air blast loading using single degree of freedom method (SDOF). A tri-linear elastic perfectly plastic SDOF model has been used to obtain the pressure-impulse diagram to correlate the blast pressure and the corresponding concrete flexural damage. In order to capture the response history for the slab, a new approximately SDOF method based on the conventional SDOF method is proposed and validated using published test data. The influences of pulse loading shape on the pressure-impulse diagram are studied. Based on the results, a pressure-impulse diagram generation method using SDOF and an analytical equation for the pressure-impulse diagram is proposed to different damage levels and different blast loading shapes.

Analysis of Joint Behavior in Cement Concrete Pavements (시멘트 콘크리트 포장체 줄눈부의 거동해석)

  • 변근주;이상민;임갑주;한봉완
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.10a
    • /
    • pp.1-6
    • /
    • 1990
  • Joints are provided in cement concrete pavements to control transverse and longitudinal cracking that occur due to restrained deformations caused by moisture and temperature variations in the slab. But the construction of joints reduces the load-carrying capacity of the pavement at the joints, and pavements have beem deteriorated by cracks at the slab edges along the joints due to traffic loads. Therefore, it is important to analyze the behavior of joints accurately in the design of cement concrete pavements. In this study, the mechanical behavior of cement concrete pavement slabs is analyzed by the plate-finite element model, and Winkler foundation model is adopted to analyze the subgrades. The load transfer mechanism of joints are composed of dowel action, aggregate interlocking, and tied-key action, and the analytical program is developed using these joint models.

  • PDF

A Study for the Mechanical Behavior of the Continuous Casting Slab Using Numerical Analysis (수치해석을 이용한 연주 주편의 역학적 거동 해석)

  • Ha, Jong-Su;Cho, Jong-Rae;Lee, Bu-Yun;Ha, Man-Yeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.122-128
    • /
    • 2000
  • In this paper, a bulging condition which affect the quality of continuous casting steel was analyzed by using the numerical analytic method. First, solidification analyses were performed for each cooling zone by one-dimensional finite difference method. The bulging deformation of cast slab has been calculated with a two-dimensional elasto-plastic and creep finite element model. The adequacy of the model has been checked against the experimental results. From this study the effects of the process variables such as casting speed, cooling condition and roll pitch were examined. The results from these analyses would be able to apply to the design of continuous casting process.

  • PDF

Modeling concrete fracturing using a hybrid finite-discrete element method

  • Elmo, Davide;Mitelman, Amichai
    • Computers and Concrete
    • /
    • v.27 no.4
    • /
    • pp.297-304
    • /
    • 2021
  • The hybrid Finite-Discrete Element (FDEM) approach combines aspects of both finite elements and discrete elements with fracture mechanics principles, and therefore it is well suited for realistic simulation of quasi-brittle materials. Notwithstanding, in the literature its application for the analysis of concrete is rather limited. In this paper, the proprietary FDEM code ELFEN is used to model concrete specimens under uniaxial compression and indirect tension (Brazilian tests) of different sizes. The results show that phenomena such as size effect and influence of strain-rate are captured using this modeling technique. In addition, a preliminary model of a slab subjected to dynamic shear punching due to progressive collapse is presented. The resulting fracturing pattern of the impacted slab is similar to observations from actual collapse.

Comparison between analytic and numerical approaches to calculate screening current induced field in HTS magnet

  • Bang, Jeseok;Kim, Seokho;Kim, Jaemin;An, Soobin;Im, Chaemin;Hahn, Seungyong
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.2
    • /
    • pp.45-49
    • /
    • 2019
  • This paper reports comparison between analytic and numerical simulation approaches for calculation of screening current and screening current induced field in a high temperature superconductor magnet. Bean slab model is adopted to calculate screening current and SCF analytically, while the finite element method numerically. A case study of screening current and SCF calculation are conducted with a magnet, a 7 T 68 mm cold-bore multi-width no-insulation GdBCO magnet built and tested by Massachusetts Institute of Technology Francis Bitter Magnet Laboratory. In this study, we assume the magnet is dunked in liquid nitrogen at 77 K. Furthermore, the simulation results are compared in terms of computation time and accuracy. Finally, discussion on the different methods together with the comparison between the calculations and experiment is provided.

The Experimental Study on Transverse Field Joint Method of Precast Road Deck Slab of Double Deck Tunnel in Great Depth (대심도 복층터널 프리캐스트 중간슬래브의 횡방향 현장이음방식에 대한 실험연구)

  • Lee, Doo-Sung;Kim, Bo-Yeon;Bae, Chul-Gi;Hur, Jae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.23-32
    • /
    • 2017
  • The joints between precast PSC slabs of the intermediate road slab in double deck tunnel are inevitably generated in the road traffic vehicle traveling direction. Therefore, it is important to make the behavior of parts on the joint in one piece. The imtermediate road slab system of double deck tunnel in great depth proposed in this study will be constructed with precast PSC slab in order to minimize the construction period. And the joint connection between the precast slab has been developed in two methods: the 'Transverse tendon reinforcement method' and 'High strength bolts connection method'. Also, the experiments were performed for the full scale model in order to evaluate the performance of the intermediate road deck slab with two type joints systems, the structural stability was verified through the F.E.M analsysis. The results of static loading test and F.E.M analysis investigated a very stable behavior of intermediate road deck slab in double deck tunnel applying the joint methods developed in this study, in the cracks and deflections to satisfy the design standards of Highway Roads Bridges (2011), it was determined that there is no problem even servicebility.

Seismic Performance of Post Tensioned Flat Plate Structures according to Slab Bottom Reinforcement (하부 철근 유무에 따른 포스트 텐션 플랫 플레이트 골조의 내진성능 평가)

  • Han, Sang-Whan;HwangBo, Jin;Ryu, Jong-Hyuk;Park, Young-Mi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.11-17
    • /
    • 2008
  • This study evaluates the seismic performance of post-tensioned flat plate structures with or without slab bottom reinforcement. For this purpose, 3 and 9 story frames were designed only considering gravity loads. This study conducts a nonlinear static pushover analysis. This study was an analytical model that is able to represent punching shear failure and fracture mechanism. The analytical results showed that the seismic performance of a post-tension flat plate is strongly influenced by the existence of slab bottom reinforcement through column. By placing slab bottom reinforcement in a PT flat plate frame, lateral strength and max drift capacity are significantly increased.

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.

A Study on Coupling Coefficient Between Rail and Reinforcing Bars in Concrete Slab Track (콘크리트 슬래브궤도에서 레일과 철근 사이의 결합계수에 대한 연구)

  • Kim, Min-Seok;Lee, Sang-Hyeok;Kwon, Jae-Wook;Lee, Jong-Woo
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1169-1177
    • /
    • 2008
  • The system of the railway signaling using the track transmits the approved speed to the location of a train and it. Referring to the way of transmitting train control information, there are the one transmitting it to the on-board system of a train using the direct track, the another transmitting it establishing an instrument, and the other transmitting an instrument by a railway track. The one is the method using the direct track as a conductor for composing the part of the track and attaining the information controlling a train by transmitting a signal to the track. It is used for the high-speed railway and the subway. The method using the track attains information by transmitting it to returned information, and the on-board system of a train attains it by magnetic coupling. Because many reinforcing bars on the concrete slab track are used, interaction between a rail and a reinforcing bar that is not produced on ballast track is made. Due to the interaction, the electric characteristic of rail is changed. In the current paper, we numerically computed the coupling coefficient between the rail and the reinforcing bar based on the concrete slab track throughout the model related to the rail and the reinforcing bar using the concrete slab track that is used in the second interval of the Gyeongbu high-speed railway, and we defined the coupling coefficient not changed in the electric characteristic of rail in the condition that there is no interaction between the rail and the reinforcing bar.

  • PDF