• Title/Summary/Keyword: SKC

Search Result 72, Processing Time 0.031 seconds

Analytical Method of additive in Polyester (I) (폴리에스테르의 첨가제 분석법(I))

  • Jung, Jong Hwa;Lee, Kyeong Hee
    • Analytical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.84-88
    • /
    • 1999
  • A method to analyze additives in a polyester resin has been studied by utilizing a centrifuge and a thin layer chromatography. Identification of the separated organic and inorganic compounds were carried out by spectrophotometers, such as NMR, UV-VIS, IR and XRD. For the polyester resin studied in this research contained organic and inorganic compounds which were found to be a dimer form of 2-phenylbenzoazole and an anatase form of $TiO_2$, respectively.

  • PDF

Development of an Sampling Tube for Organic Solvents and Study on the Adsorption Capacity of the Activated Charcoal (유기용제용 시료채취기 개발을 위한 활성탄 성능검정에 관한 연구)

  • Bai, Ya Soung;Park, Doo Young;Lim, Dai Soung;Park, Byung Moo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.15 no.1
    • /
    • pp.8-18
    • /
    • 2005
  • Adsorption capacity for the charcoal were tasted in this study to verify the performance of them for the use of the sampling media in industrial hygiene field. Two set of experiments were conducted. The first experiment was to test performance of the tested charcoal tube that were assembled in the laboratory with the use of the GR grade charcoal. The other tests were investigate the adsorption capacity of the charcoal tested in this study and charcoals embedded in the commercial charcoal tubes. Known air concentration samples for benzene, toluene, and o-xylene were prepared by the dynamic chamber. 1. At low air concentration levels (0.1${\times}$TLV), there was no significant differences between the tested charcoal tubes and the SKC charcoal tubes. This implies that there is no defect with the adsorption capacity of the charcoal. 2. At high concentration with 60 minutes sampling, the breakthrough were found only in the tested charcoal while no breakthrough were shown in the SKC charcoal. 3. From the breakthrough tests for the charcoal, the micropore volume(Wo) were calculated by the curve fitting with the use of Dubinin/Radushkevich(D/R) adsorption isotherm equation. The calculated values were 0.687cc/g for SKC, 0.504cc/g for Sensidyne, and 0.419cc/g for the tested charcoal(Aldrich). 4. Adsorption capacities were obtained from the isotherm curves shown adsorption capacities at several levels of the challenge concentration. All range of the air concentration concerned in industrial hygiene, the SKC charcoal showed approximately two times of adsorption capacity compared to the tested charcoal.

Characterization of High Efficient Red Phosphorescent OLEDs Fabricated on Flexible Substrates (연성기판위에 제작된 고효율 Red 인광 OLED의 특성평가)

  • Kim Sung Hyun;Lee Yoo Jin;Byun Ki Nam;Jung Sang Yun;Lee Bum Sung;Yoo Han Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.15-19
    • /
    • 2005
  • The organic light-emitting devices(OLEDs) based on fluorescence have low efficiency due to the requirement of spin-symmetry conservation. By using the phosphorescent material, the internal quantum efficiency can reach 100$\%$, compared to 25$\%$ in case of the fluorescent material [1]. Thus recently phosphorescent OLEDs have been extensively studied and showed higher internal quantum efficiency than conventional OLEDs. In this study, we have applied a new Ir complex as a red dopant and fabricated a red phosphorescent OLED on a flexible PC(Polycarbonate) substrate. Also, we have investigated the electrical and optical properties of the devices with a structure of A1/LiF/Alq3/(RD05 doped)BAlq/NPB/2-TNAIA/ITO/PC substrate. Our device showed the lightening efficiency of > 30 cd/A at an initial brightness of 1000 cd/$m^{2}$. The CIE(Commission Internationale de L'Eclairage) coordinates for the device were (0.62,0.37) at a current density of 1 mA/$cm^{2}$. In addition, although the sheet resistance of ITO films on PC substrate is higher than that on glass substrate, the flexible OLED showed much better lightening efficiency without much increase in operating voltage.

  • PDF

Growth Performance, Humoral Immune Response and Carcass Characteristics of Broiler Chickens Fed Alkali Processed Karanj Cake Incorporated Diet Supplemented with Methionine

  • Panda, K.;Sastry, V.R.B.;Mandal, A.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.677-681
    • /
    • 2005
  • A study was conducted to see the effect of dietary incorporation of alkali (1.5% NaOH, w/w) processed solvent extracted karanj cake (SKC) supplemented with methionine on growth performance, humoral immune response and carcass characteristics of broiler chickens from 0 to 8 weeks of age. One hundred and twenty, day- old broiler chicks were wing banded, vaccinated against Marek' disease and distributed in a completely randomized design (CRD) into 3 groups of 40 chicks each, which was further replicated to 4 and fed on diet containing soybean meal and those of test groups were fed diets containing alkali (1.5% NaOH) treated SKC partially replacing soybean meal nitrogen of reference diet (12.5%) without or with supplementation of methionine (0.2%). Individual body weight of chicks and replicate-wise feed intakes were recorded at weekly intervals throughout the experimental period. Feed consumption from 1 to 14, 28, 42 and 56 d of age was recorded for each replicate and feed conversion efficiency (weight gain/feed intake) for the respective period was calculated. Mortality was monitored on daily basis. On 28$^{th}$ day of experimental feeding, two birds of each replicate in each dietary group (8 birds/diet) were inoculated with 0.1 ml of a 1.0% suspension of sheep red blood cells (SRBC) and the antibody titre (log 2) was measured after 5 days by the microtitre haemmagglutination procedure. After 42 days of experimental feeding, a retention study of 4 days (43-47 d) duration was conducted on all birds to determine the retention of various nutrients such as DM, N, Ca, P and GE. On 43$^{rd}$ day of experimental feeding, one representative bird from each replicate of a dietary treatment (4/dietary group) was sacrificed, after fasting for two hours with free access to water, through cervical dislocation to observe the weight of dressed carcass, primal cuts (breast, thigh, drumstick, back, neck and wing), giblet (liver, heart and gizzard), abdominal fat and digestive organs. The body weight gain of chicks fed reference diet and those fed diet incorporated with NaOH treated SKC (12.5% replacement) with or without methionine supplementation was comparable during 0 to 4 weeks of age. However, dietary incorporation of alkali processed SKC replacing 12.5% nitrogen moiety of soybean meal resulted in growth retardation, subsequently as evidenced by significantly (p<0.05) lowered body weight gain during 0 to 6 weeks of age in birds fed diet incorporated with alkali processed SKC at 6.43% without methionine as compared to those supplemented with methionine or reference diet. Dietary incorporation of alkali (1.5% NaOH) processed SKC replacing 12.5% of soybean meal nitrogen in the diet of broiler chickens had no adverse effect on feed conversion ratio during all the weeks of experimental feeding. The humoral immune response (HIR) as measured by the antibody titre in response to SRBC inoculation was comparable among all the dietary groups. No significant difference in the intake and retention of DM, N, Ca, P or GE was noted among the chicks fed reference and alkali processed SKC incorporated diets with or without methionine supplementation. None of the carcass traits varied significantly due to dietary variations, except the percent weight of liver and giblet. The percent liver weight was significantly (p<0.05) higher in the birds fed diet incorporated with alkali processed SKC as compared to that in other two groups. Thus solvent extracted karanj cake could be incorporated after alkali (1.5% NaOH, w/w) processing at an enhanced level of 6.43%, replacing 12.5% of soybean meal nitrogen, in the broiler diets up to 4 weeks of age, beyond which the observed growth depression on this diet could be alleviated by 0.2% methionine supplementation.

Quantification of Karanjin, Tannin and Trypsin Inhibitors in Raw and Detoxified Expeller and Solvent Extracted Karanj (Pongamia glabra) Cake

  • Panda, A.K.;Sastry, V.R.B.;Kumar, A.;Saha, S.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.12
    • /
    • pp.1776-1783
    • /
    • 2006
  • Despite being a rich source of protein (28-34%), karanj (Pongamia glabra) cake is found to be bitter in taste and toxic in nature owing to the presence of flavonoid (karanjin), tannin and trypsin inhibitor, thereby restricting its safe inclusion in poultry rations. Feeding of karanj cake at higher levels (>10%) adversely affected the growth performance of poultry due to the presence of these toxic factors. Therefore, efforts were made to detoxify karanj cake by various physico-chemical methods such as dry heat, water washing, pressure cooking, alkali and acid treatments and microbiological treatment with Sacchraromyces cerevisiae (strain S-49). The level of residual karanjin in raw and variously processed cake was quantified by high performance liquid chromatography and tannin and trypsin inhibitor was quantified by titrametric and colorimetric methods, respectively. The karanjin, tannin and trypsin inhibitor levels in such solvent and expeller pressed karanj cake were 0.132, 3.766 and 6.550 and 0.324, 3.172 and 8.513%, respectively. Pressure-cooking of solvent extracted karanj cake (SKC) substantially reduced the karanjin content at a cake:water ratio of 1:0.5 with 30-minute cooking. Among chemical methods, 1.5% (w/w) NaOH was very effective in reducing the karanjin content. $Ca(OH)_2$ treatment was also equally effective in karanjin reduction, but at a higher concentration of 3.0% (w/w). A similar trend was noticed with respect to treatment of expeller pressed karanj cake (EKC). Pressure cooking of EKC was effective in reducing the karanjin level of the cake. Among chemical methods alkali treatment [2% (w/w) NaOH] substantially reduced the karanjin levels of the cake. Other methods such as water washing, dry heat, HCl, glacial acetic acid, urea-ammoniation, combined acid and alkali, and microbiological treatments marginally reduced the karanjin concentration of SKC and EKC. Treatment of both SKC and EKC with 1.5% and 2.0% NaOH (w/w) was the most effective method in reducing the tannin content. Among the various methods of detoxification, dry heat, pressure cooking and microbiological treatment with Saccharomyces cerevisiae were substantially effective in reducing the trypsin inhibitor activity in both SKC and EKC. Based on reduction in karanjin, in addition to tannin and trypsin inhibitor activity, detoxification of SKC with either 1.5% NaOH or 3% $Ca(OH)_2$, w/w) and with 2% NaOH were more effective. Despite the effectiveness of pressure cooking in reducing the karanjin content, it could not be recommended for detoxification because of the practical difficulties in adopting the technology as well as for economic considerations.

업계소식

  • Korea Electronics Association
    • Journal of Korean Electronics
    • /
    • v.14 no.11
    • /
    • pp.48-54
    • /
    • 1994
  • PDF