• 제목/요약/키워드: SK-N-SH cell lines

검색결과 15건 처리시간 0.025초

CT105로 유도된 신경모세포종 세포주에서 세심탕의 항치매 효과 (Effect on Alzheimer's Disease by Sesim-tang in CT105-overexpressed SK-N-SH Cell Lines)

  • 권형수;박치상;박창국
    • 대한한의학회지
    • /
    • 제25권2호
    • /
    • pp.138-150
    • /
    • 2004
  • Objectives : Alzheimer's disease (AD) is a geriatric dementia that is widespread in old age. In the near future AD will be the biggest problem in public health service. Although a variety of oriental prescriptions, including Sesim-tang, have been traditionally utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet been fully elucidated. The present study investigated the effects of Sesim-tang on apoptotic cell death induced by CT105 (carboxy terminal 105 amino acid peptide fragment of APP) overexpression in SK-N-SH neuroblastoma cell lines. Methods: We studied the regenerative and inhibitory effects on Alzheimer's disease in CT105-induced SK-N-SH cell lines by Sesim-tang water extract. We examined for cell morphological pattern, DNA fragmentation, LDH activity assay, zymography assay, and immunohistochemistric analysis. Additionally, we investigated the association between the CT105 and neurite degeneration caused by CT105-induced apoptotic response in neurone cells. Results: Findings from our experiments have shown that Sesim-tang inhibits the synthesis or activities of CT105, which has neurotoxicities and apoptotic activities in the cell line. In addition, pretreatment with Sesim-tang ($>50\mu\textrm{g}/ml$ for 12 hours) partially prevented CT105-induced cytotoxicity in SK-N-SH cell lines. SK-N-SH cell lines overexpressed with CT105 exhibited remarkable apoptotic cell damage. Based on morphological observations by phase-contrast microscope and LDH activity measurements in the culture media, the CT105-induced cell death was significantly inhibited by Sesim-tang water extract. Sesim-tang was found to reduce the expression of APP and caspase-3 induced by CT105 in SK-N-SH cell lines and in rat hippocampus. Conclusions: As the result of this study, in the Sesim-tang group, apoptosis in the nervous system is inhibited, the repair against the degeneration of SK-N-SH cell lines by CT105 expression is promoted. Hence, Sesim-tang may be beneficial for the treatment of AD.

  • PDF

CT105로 유도된 신경모세포종 세포주에서 지미탕(指迷湯)의 항치매효과 (Effects on Alzheimer's disease by Jimitang in CT105-overexpressed SK-N-SH cell lines)

  • 강승준;박창국;박치상
    • 대한한방내과학회지
    • /
    • 제25권3호
    • /
    • pp.482-491
    • /
    • 2004
  • Alzheimer's disease(AD) is a geriatric dementia that is widespread in old age. In the near future AD may be the biggest problem in public health service. Although a variety of oriental therapies in the study of Jimitang have been traditionally utilized for the treatment of AD, their pharmacological effects and active mechanisms have not been fully elucidated. This study in an investigation of effects of Jimitang on apoptotic cell death induced by CT105 overexpression in SK-N-SH neuroblastoma cell lines. DNA fragmentation, neurite outgrowth assay and LDH activity assay were examined. The regeneratory and inhibitory effects on Alzheimer's disease in pCT105-induced neuroblastoma cell lines by Jimitang water extract were examined. Findings from these experiments have shown that Jimitang inhibits the synthesis or activities of CT105, which has neurotoxicities and apoptotic activities in cell lines. In addition, pretreatment of $Jimitang(>50\;{\mu}g/mL\;for\;12\;hours)$ partially prevented CT(105)-induced cytotoxicity in SK-N-SH cell lines, and were inhibited by pretreatment. $Jimitang(>50\;{\mu}g/mL\;for\;12\;hours)$ repaired CT(105)-induced neurite outgrowth when SK-N-SH cell lines were transfected with CT(105). Results of this study show that. in the Jimitang group, the apoptosis in the nervous system in inhibited, the repair against the degerneration of neuroblastoma cells by CT105 expression is promoted. In addition, Jimitang was found to inhibit DNA fragmentation induced by CT105 overexpression, and promote neurite outgrowth. These findings suggest that Jimitang is beneficial for the treatment of AD.

  • PDF

ECM 단백질이 IMR-32 및 SK-N-SH 세포주 신경축색생장에 미치는 영향 (Analyses of the Neurite Outgrowth and Signal Transduction in IMR-32 and SK-N-SH Cells by ECM Proteins)

  • 최윤정;김철우;허규정
    • 한국동물학회지
    • /
    • 제38권4호
    • /
    • pp.542-549
    • /
    • 1995
  • Extracellular matrix(ECM) 단백질이 SK-N-SH 및 IMR-32 세포주가 신경계 세포로 분화되는 데 미치는 영향을 조사하였다. Laminin과 collagen으로 도말한 배양기에서 7일간 배양했을 때 SK-N-SH세포는 잘 발달된 신경측색생장을 보였으나 IMR-32세포는 뚜렷한 형태변화를 나타내지 않았다. 왜 IMR-32세포가 ECM 단백질에 반응을 하지 않는가를 규명하기 위하여 ECM단백질에 의한 초기 신호전달기작을 두 세포주에서 분석하였다. ECM 단백질을 도말한 배양기에 세포를 깔았을 때 한시간 만에 tyrosine 인산화된 단백질이 두 세포 모두 증가함을 볼 수 있었다. 아울러 focal adhesion kinase(FAK)의 tyrosine 인산화도 두 세포주 모두에서 증가하였다. 이러한 결과는 두 세포주가 ECM 단백질에 의한 초기 신호전달체계가 정상임을 의미한다. 신경세포 분화과정에 증가한다고 알려진 Bcl-2 및 NSE의 량을 ECM 단백질 처리후 조사하였을 때 SK-N-SH 세포주는 두 단백질이 증가 했지만 IMR-32 세포주는 변화가 없었다. 이러한 결과는 IMR-32 세포주가 ECM 단백질에 반응하지 않는 것이 ECM 단백질에 의한 신호전달체계에 문제가 있다기 보다 신경계세포로 분화되는 데 필요한 유전인자의 발현조절에 문제가 있음을 시사한다.

  • PDF

신경세포에서의 Human Cytomegalovirus 증식과 이에 따른 세포내 유리칼슘 농도 변화 (Human Cytomegalovirus Replication and $Ca^{2+}$ Response in Human Cell Lines of Neuronal Origin)

  • 강경희;이찬희
    • 대한바이러스학회지
    • /
    • 제26권1호
    • /
    • pp.1-8
    • /
    • 1996
  • Human cytomegalovirus (HCMV) replication and $Ca^{2+}$ response in human cell lines of neuronal origin were investigated. SK-N-SH (neuroblastoma cells) and A172 cells (glioblastoma cells) were used. SK-N-SH cells were permissive for HCMV multiplication with a delay of one day compared to virus multiplication in human embryo lung (HEL) cells. The delay of HCMV multiplication in SK-N-SH cells appeared to be correlated with a delay in the $Ca^{2+}$ response. The cytoplasmic free $Ca^{2+}$ concentration ($[Ca^{2+}]_i$) began to increase at 12 h p.i. in HCMV-infected SK-N-SH cells, while $[Ca^{2+}]_i$ increase in HCMV-infected HEL cells was observed as early as 3 h p.i. On the whole, the level of the increase in $[Ca^{2+}]_i$ in SK-N-SH cells was about 30% of that in HEL cells. On the other hand, in A172 cells infected with HCMV, neither production of infectious virus nor detectable increase in $[Ca^{2+}]_i$ was observed. Treatment with TPA of HCMV-infected SK-N-SH cells resulted in $[Ca^{2+}]_i$ increase at 6 h p.i. The stimulatory effect of TPA on HCMV- induced $[Ca^{2+}]_i$ increase continued until 12 h p.i., but TPA failed to stimulate the $Ca^{2+}$ response in SK-N-SH cells at 24 h p.i., suggesting that the effect of TPA had disappeared in SK-N-SH cells at that time point. In conclusion, SK-N-SH cells are permissive for HCMV replication and the delay in $Ca^{2+}$ response may be a consequence of the lower responsiveness of SK-N-SH cells than HEL cells to HCMV infection.

  • PDF

CT105로 유도된 인간신경아세포종 세포주에서 전매단의 항치매 효과 (Effect of Anti-Alzheimer's disease by Jeonmaedan in CT105-overexpressed SK-N-SH cell lines)

  • 송호상;박치상;박창국
    • 대한한의학방제학회지
    • /
    • 제11권2호
    • /
    • pp.95-110
    • /
    • 2003
  • Alzheimer's disease(AD) is a geriatric dementia that is widespread in old age. In the near future AD will be the biggest problem in public health service. Although a variety of oriental prescriptions in study Jeonmaedan have been traditionally utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet fully elucidated. It has been widely believed that A${\beta}$ peptide devided from APP causes apoptotic neurotoxicity in AD brain. However, recent evidence suggests that CTl05(carboxy terminal 105 amino acid peptide fragment of APP) may be an important factor causing neurotoxicity in AD. In addition, AD is one of brain degeneration disease. So we studied on herbal medicine that have a relation of brain degeneration. In Oriental Medicine, Jeonmaedan has been used for disease in relation to brain degeneration. As the result of this study, in Jeonmaedan the apoptosis in the nervous system is inhibited, the repair against the degerneration of SK-N-SH cell lines by CT105 expression is promoted. So Jeonmaedan may be beneficial for the treatment of AD.

  • PDF

2-알킬-2,3-다이하이드로-1H-2-아자사이클로펜타[b]안트라센-5,10-디온계 유도체 합성 및 세포독성 (Synthesis and In Vitro Cytotoxic Activities of 2-Alkyl-2,3-dihydro-1H-2-azacyclopenta[b]anthracene-5,10-diones)

  • 곽재환;정은경;오주훈;정재경;홍진태;이희순
    • 약학회지
    • /
    • 제53권1호
    • /
    • pp.41-44
    • /
    • 2009
  • A series of 2-alkyl-2,3-dihydro-1H-2-azacyclopenta[b]anthracene-5,10-diones ($3a{\sim}h$) were synthesized and evaluated in vitro cytotoxicity against colon cancer cell lines (HCT116 and SW620) and nuroblastoma cell lines (SK-N-SH and SK-N-MC). Among them, compound 3f showed significant cytotoxic activity ($IC_{50}$ against SK-N-SH; $14.8{\mu}M$, $IC_{50}$ against SK-N-MC; $11.3{\mu}M$).

Promoting Effects of Sanguinarine on Apoptotic Gene Expression in Human Neuroblastoma Cells

  • Cecen, Emre;Altun, Zekiye;Ercetin, Pinar;Aktas, Safiye;Olgun, Nur
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권21호
    • /
    • pp.9445-9451
    • /
    • 2014
  • Neuroblastoma is the most common extracranial solid tumor in children. Approximately half of the affected patients are diagnosed with high-risk poor prognosis disease, and novel therapies are needed. Sanguinarine is a benzophenanthridine alkaloid which has anti-microbial, anti-oxidant and anti-inflammatory properties. The aim of this study is whether sanguinarine has in vitro apoptotic effects and which apoptotic genes might be affected in the human neuroblastoma cell lines SH-SY5Y (N-myc negative), Kelly (N-myc positive, ALK positive), and SK-N-BE(2). Cell viability was analysed with WST-1 and apoptotic cell death rates were determined using TUNEL. After RNA isolation and cDNA conversion, expression of 84 custom array genes of apoptosis was determined. Sanguinarine caused cell death in a dose dependent manner in all neuroblastoma cell lines except SK-N-BE(2) with rates of 18% in SH-SY5Y and 21% in Kelly human neuroblastoma cells. Cisplatin caused similar apoptotic cell death rates of 16% in SH-SY5Y and 23% in Kelly cells and sanguinarine-cisplatin combinations caused the same rates (18% and 20%). Sanguinarine treatment did not affect apoptototic gene expression but decreased levels of anti-apoptotic genes NOL3 and BCL2L2 in SH-SY5Y cells. Caspase and TNF related gene expression was affected by the sanguinarine-cisplatin combination in SH-SY5Y cells. The expression of regulation of apoptotic genes were increased with sanguinarine treatment in Kelly cells. From these results, we conclude that sanguinarine is a candidate agent against neuroblastoma.

Neuroblastoma세포의 생존과 분화에 미치는 retinoic acid, thyroid hormone, 및 hydrocortisone의 작용 (Effect of Retinoic Acid, Thyroid Hormone and Hydrocortisone on Viability and Differentiation in SK-N-SB Neuroblastoma Cell Lines)

  • 이경은;배영숙
    • Biomolecules & Therapeutics
    • /
    • 제8권4호
    • /
    • pp.285-292
    • /
    • 2000
  • The effects of the members of the same nuclear receptor superfamily (all-trans retinoic acid (RA), thyroid hormone(T3) or hydrocortisone) on proliferation and differentiation in the SK-N-SH neuroblastoma (NB) cell lines were studied. NB cells were treated with RA, T3, or hydrocortisone at concentration of 10$^{-6}$ M or 10$^{-8}$ M for 3 days or 7 days. RA induced concentration- and time-dependent morphologic differentiation(neurite outgrowth and microtubule-associated protein expression) and growth inhibition in NB cells. Treatment of 10$^{-7}$ M T3 for 7 days increased viability and differentiation of NB cells. Treatment of 10$^{-6}$ M hydrocortisone for 7 days increased viability of NB cells. Although these three effectors are members of the same receptor superfamily, the regulation of brain development may be carried out in a different manner.

  • PDF

구척(狗脊) 메탄올추출액이 신경세포의 재생 및 회복효과에 미치는 영향 (Effect of MeOH Extract of Cibotium barometz for Repair and Regeneration of Nogo A-injuried Neuroblastoma Cells)

  • 김상태;김정도;김영균
    • 생약학회지
    • /
    • 제35권2호통권137호
    • /
    • pp.105-109
    • /
    • 2004
  • The effect of MeOH extract of Cibotium barometz (or Cibaro) on nogo-A expression was studied by neurite cone collapse and neurite outgrowth assay. The degrees of mRNA expression of BDNF, GDNF, and Caspase-3 in nogo-A were also examined with SK-N-SH cell lines using RT-PCR and confocal microscopy methods. We have shown that Cibaro treatment inhibits nogo-A activation in SK-N-SH cell lines. It has been shown that Cibaro increases the expression rates of neurofilament and enhances neurite outgrowth in neuroblastoma cells as increasing the amount of Cibaro. It has been also shown that Cibaro increases the expression rates of BDNF, GDNF mRNA in neuroblastoma cells as increasing the amount of Cibaro. These results suggest that Cibaro induces neutrite outgrowth by nogo-A inactivation and is, therefore, crucial for the treatments against anaplastic disc and spinal neuronal anesthesia.

원지 디클로로메탄분획이 CT105에 의한 신경세포 상해에 미치는 영향 (The Effects of Polygala Tenuifolia DM Fraction on CT105-injuried Neuronal Cells)

  • 이상원;김상호;김태헌;강형원;류영수
    • 동의생리병리학회지
    • /
    • 제18권2호
    • /
    • pp.507-516
    • /
    • 2004
  • Alzheimer's disease(AD) is a geriatric dementia that is widespread in old age. In the near future AD will be the commom disease in public health service. Although a variety of oriental presciptions in study POD(Polygala tenuifolia extracted from dichlorometan) have been traditionally utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet fully elucidated. It has been widely believed that AP peptide divided from APP causes apoptotic neurotoxicity in AD brain. However, recent evidence suggests that CT105, carboxy terminal 105 aminoacids peptide fragment of APP, may be an important factor causing neurotoxicity in AD. SK-N-SH cells expressed with CT105 exhibited remarkable apoptotic cell damage. Based on morphological observations by phase contrast microscope and NO formation in the culture media, the CT105-induced cell death was significantly inhibited by POD. In addition, AD is one of brain degeneration disease. So We studied on herbal medicine that have a relation of brain degeneration. From old times, In Oriental Medicine, PO water extract has been used for disease in relation to brain degeneration. We were examined by ROS formation, neurite outgrowth assay and DPPH scravage assay. Additionally, we investigated the association between the CT105 and neurite degeneration caused by CT105-induced apoptotic response in neurone cells. We studied on the regeneratory and inhibitory effects of anti-Alzheimer disease in pCT105-induced neuroblastoma cell lines by POD. Findings from our experiments have shown that POD inhibits the synthesis or activities of CT105, which has neurotoxityies and apoptotic activities in cell line. In addition, treatment of POD(>50 ㎍/㎖ for 12 hours) partially prevented CT(105)-induced cytotoxicity in SK-N-SH cell lines, and were inhibited by the treatment with its. POD(>50 ㎍/㎖ for 12 hours) repaired CT105-induced neurite outgrowth when SK-N-SH cell lines was transfected with CT105. As the result of this study, In POD group, the apoptosis in the nervous system is inhibited, the repair against the degerneration of Neuroblastoma cells by CT105 expression is promoted. Decrease of memory induced by injection of scopolamin into rat was also attenuted by POD, based on passive avoidance test. Taken together, POD exhibited inhibition of CT105-induced apoptotic cell death. POD was found to reduce the activity of AchE and induced about the CA1 in rat hippocampus. Base on these findings, POD may be beneficial for the treatment of AD.