• Title/Summary/Keyword: SK-N-SH

Search Result 51, Processing Time 0.028 seconds

Effect of 1,2,3,4,6-penta-O-gallolyl-β-ᴅ-glucose on markers of cognitive function in human neuroblastoma SK-N-SH cell line (1,2,3,4,6-Penta-O-gallolyl-β-ᴅ-glucose가 인간 유래 신경모세포주인 SK-N-SH세포의 인지기능 표지자에 미치는 영향)

  • Yoon, Hyeon Seok;Park, So Yeon;Kim, Yoon Hee
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.715-721
    • /
    • 2021
  • Cognitive impairment and Alzheimer's disease are serious social problems associated with the rising elderly population in Korea. 1,2,3,4,6-Penta-O-galloyl-β-ᴅ-glucopyranose (PGG) is a gallotannin isolated from medicinal plants such as Rhus chinensis. This study was performed to evaluate the effect of PGG on biomarkers related to cognitive function in human neuroblastoma SK-N-SH cells. Inhibition of acetylcholinesterase (AChE) activity is considered to be one of the main therapeutic strategies. PGG inhibited AChE activity in the test tube as well as in SK-N-SH cells. In addition, PGG induced protein and mRNA expression of brain-derived neurotrophic factor (BDNF), which is a mammalian neurotrophin that plays major roles in the development, maintenance, repair, and survival of neuronal populations. As one of the underlying molecular mechanisms that induce BDNF expression, PGG induced the activation of Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII)-cAMP response element binding protein (CREB) pathway. In conclusion, PGG may be an useful material for improving cognitive function.

Promoting Effects of Sanguinarine on Apoptotic Gene Expression in Human Neuroblastoma Cells

  • Cecen, Emre;Altun, Zekiye;Ercetin, Pinar;Aktas, Safiye;Olgun, Nur
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9445-9451
    • /
    • 2014
  • Neuroblastoma is the most common extracranial solid tumor in children. Approximately half of the affected patients are diagnosed with high-risk poor prognosis disease, and novel therapies are needed. Sanguinarine is a benzophenanthridine alkaloid which has anti-microbial, anti-oxidant and anti-inflammatory properties. The aim of this study is whether sanguinarine has in vitro apoptotic effects and which apoptotic genes might be affected in the human neuroblastoma cell lines SH-SY5Y (N-myc negative), Kelly (N-myc positive, ALK positive), and SK-N-BE(2). Cell viability was analysed with WST-1 and apoptotic cell death rates were determined using TUNEL. After RNA isolation and cDNA conversion, expression of 84 custom array genes of apoptosis was determined. Sanguinarine caused cell death in a dose dependent manner in all neuroblastoma cell lines except SK-N-BE(2) with rates of 18% in SH-SY5Y and 21% in Kelly human neuroblastoma cells. Cisplatin caused similar apoptotic cell death rates of 16% in SH-SY5Y and 23% in Kelly cells and sanguinarine-cisplatin combinations caused the same rates (18% and 20%). Sanguinarine treatment did not affect apoptototic gene expression but decreased levels of anti-apoptotic genes NOL3 and BCL2L2 in SH-SY5Y cells. Caspase and TNF related gene expression was affected by the sanguinarine-cisplatin combination in SH-SY5Y cells. The expression of regulation of apoptotic genes were increased with sanguinarine treatment in Kelly cells. From these results, we conclude that sanguinarine is a candidate agent against neuroblastoma.

Involvement of Intracellular Ca2+-and PI3K-Dependent ERK Activation in TCDD-Induced Inhibition of Cell Proliferation in SK-N-SH Human Neuronal Cells

  • Yang, Seun-Ah;Lee, Yong-Soo;Jin, Da-Qing;Jung, Jae-Wook;Park, Byung-Chul;Lee, Yoon-Seok;Paek, Seung-Hwan;Jeong, Tae-Cheon;Choi, Han-Gon;Yong, Chul-Soon;Yoo, Bong-Kyu;Kim, Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.13 no.2
    • /
    • pp.78-83
    • /
    • 2005
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin(TCDD) has previously shown to induce neurotoxicity through intracellular $Ca^{2+}$ increase in rat neurons. In this study we investigated the role and signaling pathway of intracellular $Ca^{2+}$ in TCDD-induced inhibition of neuronal cell proliferation in SK-N-SH human neuronal cells. We found that TCDD(10nM) rapidly increased the level of intracellular $Ca^{2+}$, which was completely blocked by the extracellular $Ca^{2+}$ chelation with EGTA (1 mM) or by pretreatment of the cells with the non-selective cation channel blocker. flufenamic acid (200 ${\mu}M$). However, pretreatment of the cells with dantrolene (25 ${\mu}M$) and TMB-8(10 ${\mu}M$), intracellular $Ca^{2+}$-release blockers, or a voltage-sensitive $Ca^{2+}$ channel blocker, varapamil (100 ${\mu}M$), failed to block the TCDD-induced $Ca^{2+}$ increase in the cells. In addition, TCDD induced a rapid and transient activation of phatidvlinositol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2(ERK1/2), which was ingnificantly blocked by the pretreatment with BAPTA, an intracellular $Ca^{2+}$ chelator, and LY294002, a PI3K inhibitor. Furthermore, inhibitors of PI3K, ERK, or an intracellular $Ca^{2+}$ chelator further potentiated the anti-proliferative effect of TCDD in the cells. Collectively, the results suggest that intracellular $Ca^{2+}$ and PI3K-dependent activation of ERK 1/2 may be involved in the TCDD-induced inhibition of cell proliferation in SK-N-SH human neuronal cells.

Neuroprotective Effect of L-Theanine on Aβ-Induced Neurotoxicity through Anti-Oxidative Mechanisms in SK-N-SH and SK-N-MC Cells

  • Jo, Mi-Ran;Park, Mi-Hee;Choi, Dong-Young;Yuk, Dong-Yeun;Lee, Yuk-Mo;Lee, Jin-Moo;Jeong, Jae-Hwang;Oh, Ki-Wan;Lee, Moon-Soon;Han, Sang-Bae;Hong, Jin-Tae
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.288-295
    • /
    • 2011
  • Amyloid beta ($A{\beta}$)-induced neurotoxicity is a major pathological mechanism of Alzheimer's disease (AD). In this study, we investigated the inhibitory effect of L-theanine, a component of green tea (Camellia sinensis) on $A{\beta}_{1-42}$-induced neurotoxicity and oxidative damages of macromolecules. L-theanine inhibited $A{\beta}_{1-42}$-induced generation of reactive oxygen species, and activation of extracellular signal-regulated kinase and p38 mitogenic activated protein kinase as well as the activity of nuclear factor kappa-B. L-theanine also signifi cantly reduced oxidative protein and lipid damage, and elevated glutathione level. Consistent with the reduced neurotoxic signals, L-theanine (10-50 ${\mu}g$/ml) concomitantly attenuated $A{\beta}_{1-42}$ (5 ${\mu}M$)-induced neurotoxicity in SK-N-MC and SK-N-SH human neuroblastoma cells. These data indicate that L-theanine on $A{\beta}$-induced neurotoxicity prevented oxidative damages of neuronal cells, and may be useful in the prevention and treatment of neurodegenerative disease like AD.

Effect of MeOH Extract of Cibotium barometz for Repair and Regeneration of Nogo A-injuried Neuroblastoma Cells (구척(狗脊) 메탄올추출액이 신경세포의 재생 및 회복효과에 미치는 영향)

  • Kim, Sang-Tae;Kim, Jeong-Do;Kim, Young-Kyoon
    • Korean Journal of Pharmacognosy
    • /
    • v.35 no.2 s.137
    • /
    • pp.105-109
    • /
    • 2004
  • The effect of MeOH extract of Cibotium barometz (or Cibaro) on nogo-A expression was studied by neurite cone collapse and neurite outgrowth assay. The degrees of mRNA expression of BDNF, GDNF, and Caspase-3 in nogo-A were also examined with SK-N-SH cell lines using RT-PCR and confocal microscopy methods. We have shown that Cibaro treatment inhibits nogo-A activation in SK-N-SH cell lines. It has been shown that Cibaro increases the expression rates of neurofilament and enhances neurite outgrowth in neuroblastoma cells as increasing the amount of Cibaro. It has been also shown that Cibaro increases the expression rates of BDNF, GDNF mRNA in neuroblastoma cells as increasing the amount of Cibaro. These results suggest that Cibaro induces neutrite outgrowth by nogo-A inactivation and is, therefore, crucial for the treatments against anaplastic disc and spinal neuronal anesthesia.

Effect of Retinoic Acid, Thyroid Hormone and Hydrocortisone on Viability and Differentiation in SK-N-SB Neuroblastoma Cell Lines (Neuroblastoma세포의 생존과 분화에 미치는 retinoic acid, thyroid hormone, 및 hydrocortisone의 작용)

  • 이경은;배영숙
    • Biomolecules & Therapeutics
    • /
    • v.8 no.4
    • /
    • pp.285-292
    • /
    • 2000
  • The effects of the members of the same nuclear receptor superfamily (all-trans retinoic acid (RA), thyroid hormone(T3) or hydrocortisone) on proliferation and differentiation in the SK-N-SH neuroblastoma (NB) cell lines were studied. NB cells were treated with RA, T3, or hydrocortisone at concentration of 10$^{-6}$ M or 10$^{-8}$ M for 3 days or 7 days. RA induced concentration- and time-dependent morphologic differentiation(neurite outgrowth and microtubule-associated protein expression) and growth inhibition in NB cells. Treatment of 10$^{-7}$ M T3 for 7 days increased viability and differentiation of NB cells. Treatment of 10$^{-6}$ M hydrocortisone for 7 days increased viability of NB cells. Although these three effectors are members of the same receptor superfamily, the regulation of brain development may be carried out in a different manner.

  • PDF

6-Hydroxydopamine-induced Adaptive Increase in GSH Is Dependent on Reactive Oxygen Species and Ca2+ but not on Extracellular Signal-regulated Kinase in SK-N-SH Human Neuroblastoma Cells

  • JIN Da-Qing;Park Byung CHUL;KIM Jung-Ae
    • Biomolecules & Therapeutics
    • /
    • v.13 no.4
    • /
    • pp.256-262
    • /
    • 2005
  • We examined the signaling molecules involved in the 6-hydroxydopamine (6-OHDA)-induced neuronal cell death and increase in cellular glutathione (GSH) level in SK-N-SH cells. The 6-OH-DA-induced cell death was significantly prevented by the pretreatment with N-acetylcysteine (NAC), a thiol antioxidant, and BAPTA, an intracellular $Ca^{2+}$ chelator. Although 6-OHDA induced ERK phosphorylation, the pretreatment with PD98059, an ERK inhibitor, did not block 6-OHDA-induced cell death. In addition, the 6-OHDA-induced activation of caspase-3, a key signal for apoptosis, was blocked by the pretreatment with NAC and BAPTA. While the level of reactive oxygen species (ROS) was significantly increased in the 6-OHDA-treated cells, the cellular GSH level was not altered for the first 6-hr exposure to 6-OHDA, but after then, the level was significantly increased, which was also blocked by the pretreatment with NAC and BAPTA, but not by PD98059. Depletion of GSH by pretreating the cells with DL-buthionine-(S,R)-sulfoximine (BSO), a glutathione synthesis inhibitor, rather significantly potentiated the 6-OHDA-induced death. In contrast to the pretreatment with NAC, 6-OHDA-induced cell death was not prevented by the post-treatment with NAC 30 min after 6-OHDA treatment. The results indicate that the GSH level which is increased adaptively by the 6-OHDA-induced ROS and intracellular $Ca^{2+}$ is not enough to overcome the death signal mediated through ROS-$Ca^{2+}$ -caspase pathway.

The Effects of Polygala Tenuifolia DM Fraction on CT105-injuried Neuronal Cells (원지 디클로로메탄분획이 CT105에 의한 신경세포 상해에 미치는 영향)

  • Lee Sang Won;Kim Sang Ho;Kim Tae Heon;Kang Hyung Won;Lyu Yeoung Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.507-516
    • /
    • 2004
  • Alzheimer's disease(AD) is a geriatric dementia that is widespread in old age. In the near future AD will be the commom disease in public health service. Although a variety of oriental presciptions in study POD(Polygala tenuifolia extracted from dichlorometan) have been traditionally utilized for the treatment of AD, their pharmacological effects and action mechanisms have not yet fully elucidated. It has been widely believed that AP peptide divided from APP causes apoptotic neurotoxicity in AD brain. However, recent evidence suggests that CT105, carboxy terminal 105 aminoacids peptide fragment of APP, may be an important factor causing neurotoxicity in AD. SK-N-SH cells expressed with CT105 exhibited remarkable apoptotic cell damage. Based on morphological observations by phase contrast microscope and NO formation in the culture media, the CT105-induced cell death was significantly inhibited by POD. In addition, AD is one of brain degeneration disease. So We studied on herbal medicine that have a relation of brain degeneration. From old times, In Oriental Medicine, PO water extract has been used for disease in relation to brain degeneration. We were examined by ROS formation, neurite outgrowth assay and DPPH scravage assay. Additionally, we investigated the association between the CT105 and neurite degeneration caused by CT105-induced apoptotic response in neurone cells. We studied on the regeneratory and inhibitory effects of anti-Alzheimer disease in pCT105-induced neuroblastoma cell lines by POD. Findings from our experiments have shown that POD inhibits the synthesis or activities of CT105, which has neurotoxityies and apoptotic activities in cell line. In addition, treatment of POD(>50 ㎍/㎖ for 12 hours) partially prevented CT(105)-induced cytotoxicity in SK-N-SH cell lines, and were inhibited by the treatment with its. POD(>50 ㎍/㎖ for 12 hours) repaired CT105-induced neurite outgrowth when SK-N-SH cell lines was transfected with CT105. As the result of this study, In POD group, the apoptosis in the nervous system is inhibited, the repair against the degerneration of Neuroblastoma cells by CT105 expression is promoted. Decrease of memory induced by injection of scopolamin into rat was also attenuted by POD, based on passive avoidance test. Taken together, POD exhibited inhibition of CT105-induced apoptotic cell death. POD was found to reduce the activity of AchE and induced about the CA1 in rat hippocampus. Base on these findings, POD may be beneficial for the treatment of AD.

Antioxidant Activity and Inhibitory Effect against Oxidative Neuronal Cell Death of Kimchi Containing a Mixture of Wild Vegetables with Nitrite Scavenging Activity (아질산염 소거 작용을 가진 산채 혼합물을 함유한 김치의 항산화 활성 및 산화적 신경세포 사멸 억제 효과)

  • Kang, Kyung Hun;Park, Si Young;Kwon, Ki Han;Lim, Heekyung;Kim, Sung Hyun;Kim, Jeong Gyun;Chung, Mi Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.10
    • /
    • pp.1458-1469
    • /
    • 2015
  • This study was carried out to investigate the nitrite scavenging activities (NSA) of nine kinds of wild vegetables in a $NaNO_2$ model system and nitrite of Chinese cabbage as well as the inhibitory effect of kimchi containing a mixture of wild vegetables (MWV) with nitrite scavenging activity on brain neuronal cell death. NSA was higher at pH 1.2 than pH 4.2 in all samples. NSA of extracts from sprouts of Oenothera laciniata and Aster scaber (AS) was above 90% at pH 1.2. AS, Codonopsis lanceolate (CL), Adenophora triphylla (AT), Platycodon grandiflorum (PG), and Taraxacum officinale (TO) extracts showed significantly higher levels of NSA than those from other extracts at pH 4.2. CL, AT, PG, and TO extracts showed high NSA on nitrite of Chinese cabbage. In addition, the effects of MWV on antioxidant and brain neuronal cell death induced by oxidative stress were investigated in human brain neuroblastoma SK-N-SH cells. MWV extract attenuated $H_2O_2$-induced cell death and reactive oxygen species (ROS) generation in SK-N-SH cells. MWV extract showed significantly higher DPPH radical scavenger activity when compared to normal kimchi extract. MWV extract showed an inhibitory effect on brain neuronal cell death against oxidative stress by antioxidant activities.

Effects of Non-saponin Red Ginseng Components on the Function of Brain Cells

  • Sohn, Eun-Hwa;Do, Hang;Kang, Nam-Sung;Jang, Seon-A;Park, Sul-Kyung;Lee, Hye-Rim;Rhee, Dong-Kwon;Pyo, Suhk-Neung
    • Journal of Ginseng Research
    • /
    • v.32 no.1
    • /
    • pp.62-66
    • /
    • 2008
  • Non-saponin gingseng fraction components (NSRG) have been known to have a variety of biological activity. However, the effects of these components on the function of brain cell have not been characterized in detail. In this study, we investigated the preventive effect of non-saponin red ginseng components on acrylamide (ACR)-induced suppression of neural cell adhesion molecule (NCAM), which is highly expressed in neuronal cells. The data showed that NSRG blocked the suppression of NCAM expression by ACR in neuroblastoma cells (SK-N-SH). In addition, NSRG significantly increased NCAM expression in ACR-nontreated neuroblastoma cells. NSRG treatment resulted in the increase of cell proliferation in a concentration-dependent manner. We also examined whether NSRG could modulate the NO production of astrocytes. When glioma cells (C6) were treated with various concentrations of NSRG (100-300 ug/ml) in the presence or absence of $IFN-{\gamma}$ for 24 hours, NO production was suppressed in $IFN-{\gamma}-$stimulated C6 cells. Taken together, these results demonstrate that treatment of brain cells with NSRG results in the enhancement of proliferation, the suppression of NO production and the protective effect on NCAM expression impaired by ACR. Thus, the present data suggest that NSRG has proliferative and neuroprotective effects and these effects could be useful in neuronal diseases.