• Title/Summary/Keyword: SK-N-MC human neuroblastoma cell

Search Result 7, Processing Time 0.016 seconds

Protective Effect of Puerariae radix Against Ethanol-induced Apoptosis on Human Neuroblastoma Cell Line SK-N-MC

  • Koo Gyo Sung;Cho Son Hae;Jang Mi Hyean;Kim Chang Ju;Kim Ee Hwa;Lee Choong Yeol
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.602-608
    • /
    • 2002
  • To investigate whether Puerariae radix (PR) possesses protective effect against ethanol (EtOH)-inducecl apoptosis in the central nervous system, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, flow cytometric analysis, DNA fragmentation assay. and reverse transcription-polymerase chain reaction (RT-PCR) were performed on human neuroblastoma cell line SK-N-MC. Morphological and biochemical analyses demonstrated that SK-N-MC cells treated with EtOH exhibit classical apoptotic features. On the other hand, cells pre-treated with PR prior to EtOH exposure showed decreased occurrence of classical apoptotic features. In addition, it was shown that PR pre-treatment inhibits EtOH-induced increases in the levels of mRNA expression of bax and caspase-3, while it further enhances the level of bcl-2 expression. These results suggest that PR may exert protective effects against EtOH-induced apoptosis in human neuroblastoma cells.

The Combined Effects of Ginkgo Biloba Extracts and Aspirin on Viability of SK-N-MC, Neuroblastoma Cell Line in Hypoxia and Reperfusion Condition

  • Moon, Sung-Hwan;Lee, Yong-Jik;Park, Soo-Yong;Song, Kwan-Young;Kong, Min-Ho;Kim, Jung-Hee
    • Journal of Korean Neurosurgical Society
    • /
    • v.49 no.1
    • /
    • pp.13-19
    • /
    • 2011
  • Objective: The purpose of this study is to investigate the combined effects of ginkgo biloba extract, ginkgolide A and B and aspirin on SK-N-MC, human neuroblastoma cell viability and mRNA expression of growth associated protein43 (GAP43), Microtubule-associated protein 2 (MAP2), B-cell lymphoma2 (Bcl2) and protein53 (p53) gene in hypoxia and reperfusion condition. Methods: SK-N-MC cells were cultured with Dulbecco's Modified Eagle's Medium (DMEM) media in $37^{\circ}C$, 5% $CO_2$ incubator. The cells were cultured for 8 hours in non-glucose media and hypoxic condition and for 12 hours in normal media and $O_2$ concentration. Cell survival rate was measured with Cell Counting Kit-8 (CCK-8) reagent assay. Reverse transcriptase polymerase chain reaction (RT-PCR) was used to estimate mRNA levels of GAP43, MAP2, Bcl2, and p53 genes. Results: The ginkgolide A and B increased viable cell number decreased in hypoxic and reperfused condition. The co-treatment of ginkgolide B with aspirin also increased the number of viable cells, however, there was no additive effect. Although there was no increase of mRNA expression of GAP43, MAP2, and Bcl2 in SK-N-MC cells with individual treatment of ginkgolide A, B or aspirin in hypoxic and reperfused condition, the co-treatment of ginkgolide A or B with aspirin significantly increased GAP43 and Bcl2 mRNA levels. In MAP2, only the co-treatment of ginkgolide A and aspirin showed increasing effect. The mRNA expression of p53 had no change in all treating conditions. Conclusion: This study suggests that the combined treatments of Ginkgo biloba extracts and aspirin increase the regeneration of neuroblastoma cells injured by hypoxia and reperfusion.

Protective Effect of Red Ginseng and Paeonia radix against Nitric Oxide-Induced Apoptosis in Human Neuroblastoma SK-N-MC cells

  • Park, Young-Hoi;Song, Yunk-Yung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.28 no.1 s.69
    • /
    • pp.198-210
    • /
    • 2007
  • Objectives : Nitric oxide(NO) is a reactive free radical and a messenger molecule in many physiological functions. However, excessive release NO of induces neurotoxicity. We investigated whether a mixture of red ginseng and paeonia radix prossesses a protective effect against sodium nitroprusside(SNP)-induced apoptosis in the human neuroblastoma cell line SK-N-MC. Methods : We performed 3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide(MTT) assay, 4,6-diamidino-2-phenylindole(DAPD) staining, terminal deoxynucleotidyl transferase(TdT)-mediated dUTP nick end labeling(TUNEL)assay, DNA fragmentation assay, reverse transcription-polymerase chain reaction(RT-PCR), Western blot analysis, and caspase-3 enzyme activity assay in SK-N-HFC cells. Result : MTT assay showed that SNP treatment significantly reduced the viabilities of cells and that pre-treatment with the red ginseng and paeonia radix mixture alleviated SNP-induced cytotoxicity. The cells treated with SNP exhibited several apoptotic features, while those pre-treated fir 1 h with the mixture of red ginseng and paeonia radix 1 h prior to SNP expose showed reduced apoptotic features. In addition, the cells pre-treated with the red ginseng and paeonia radix mixture for 1 h prior to SNP expose increased bel-2 expressions, decreased Bax expressions, and decreased caspase-3 enzyme activity. Conclusions : These results show that the red ginseng and paeonia radix mixture exerts a protective effect against SNP-induced apoptosis in SK-N-MC cells.

  • PDF

Neuroprotective Effect of Aqueous Extract of Polygala tenuifolia Willdenow on Nitric Oxide-induced Apoptosis in SK-N-MC Cells

  • Kim, Young-Giun;Song, Yun-Kyung;Lim, Hyung-Ho
    • The Journal of Korean Medicine
    • /
    • v.31 no.3
    • /
    • pp.55-65
    • /
    • 2010
  • Background: Nitric oxide (NO) is a reactive free radical gas and a messenger molecule. NO has many physiological functions, but excessive NO production induces neurotoxicity. Objective: The present study investigated whether the aqueous extract of Polygala tenuifolia Willdenow possesses a protective effect on NO-induced apoptosis in human neuroblastoma cell line SK-N-MC. Method: For this study, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, 4,6-diamidino-2-phenylindole (DAPI) staining, terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick end labeling (TUNEL) assay, DNA fragmentation assay, reverse transcription-polymerase chain reaction (RT-PCR), Western blot, and caspase-3 enzyme assay were performed. Result: Sodium nitroprusside (SNP) exposure significantly decreased the viability of cells. The cells treated with SNP exhibited several apoptotic features such as increasing of Bax expression, caspase-3 enzyme activity and inhibiting of Bcl-2 expression. On the other hand, the viability of cells pre-treated with the aqueous extract of Polygala tenuifolia Willdenow was increased dose-dependently. The cells pre-treated for 1 h with the aqueous extract of Polygala tenuifolia Willdenow followed by treatment with SNP showed a decreased occurrence of apoptotic features like decreasing Bax expressions, caspase-3 enzyme activity and increasing Bcl-2 expressions. The aqueous extract of Polygala tenuifolia Willdenow reduced apoptotic cell death in neuroblastoma cell line SK-N-MC through the inhibition of Bax-dependent caspase-3 activation and the increasing of Bcl-2 expression. Conclusion: Based on the present results, it is possible that Polygala tenuifolia Willdenow has therapeutic value for the treatment of a variety of NO-induced brain diseases.

Neuroprotective effect of Aster yomena ethanolic extract in HT-22 and SK-N-MC cells based on antioxidant activity

  • In Young Kim;Jong Min Kim;Hyo Lim Lee;Min Ji Go;Han Su Lee;Ju Hui Kim;Hyun Ji Eo;Chul-Woo Kim;Ho Jin Heo
    • Food Science and Preservation
    • /
    • v.31 no.1
    • /
    • pp.99-111
    • /
    • 2024
  • The antioxidant potentials of ethanolic extracts derived from Aster yomena (A. yomena) were evaluated by assessing their total phenolic and flavonoid contents and radical scavenging activities. Our findings revealed that the 60% ethanolic extract of A. yomena exhibited the most robust antioxidant properties among all extracts tested. Specifically, the IC50 values for the 2,2'-azino-bis (3-ethyl benzothiazoline-6-sulfonic acid) and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities of the 60% ethanolic extract from A. yomena were determined to be 1,640.30 ㎍/mL and 2,655.10 ㎍/mL, respectively. Moreover, the inhibitory effect on malondialdehyde increased with the 60% ethanolic extract from A. yomena. To assess the neuroprotective effects, we examined the impact of the 60% ethanolic extract from A. yomena against H2O2-induced cytotoxicity in HT-22 (mouse hippocampal neuronal cell line) and SK-N-MC (human neuroblastoma cell line) cells. The results demonstrated a significant improvement in cell viability and reduced intracellular oxidative stress. Furthermore, the major bioactive compounds present in the 60% ethanolic extract from A. yomena were identified as chlorogenic acid and rutin through high-performance liquid chromatography (HPLC) analysis.

Mediation of Intracellular $Ca^{2+}$ in the Phospholipase $A_2-induced$ Cell Proliferation in Human Neuroblastoma Cells

  • Kim, Jung-Ae;Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.411-417
    • /
    • 1998
  • The role of phospholipase ($A_2\;PLA_2$) in tumor cell growth was investigated using SK-N-MC human neuroblastoma cells. 4-Bromophenacyl bromide (BPB) and mepacrine (Mep), known $PLA_2$ inhibitors, suppressed growth of the tumor cells in a dose-dependent manner without a significant cytotoxicity. Melittin (Mel), a $PLA_2$ activator, enhanced the cell growth in a concentration-dependent fashion. The growth-enhancing effects of Mel were significantly reversed by the co-treatment with $PLA_2$ inhibitors. In addition, Mel induced intracellular $Ca^{2+}$ release from internal stores like as did serum, a known intracellular $Ca^{2+}$ agonist in the tumor cells. Intracellular $Ca^{2+}$ release induced by these agonists was significantly blocked by $PLA_2$ inhibitors at growth-inhibitory concentrations. Arachidonic acid (AA), a product of the $PLA_2-catalyzed$ reaction, induced cell growth enhancement and intracellular $Ca^{2+}$ release. These effects of AA were significantly blocked by BAPTA/AM, an intracellular $Ca^{2+}$ chelator. Taken together, these results suggest that the modulation of $PLA_2$ activity may be one of the regulatory mechanisms of cell growth in human neuroblastoma cells. Intracellular $Ca^{2+}$ may act as a key mediator in the $PLA_2-induced$ growth regulation.

  • PDF

Neuroprotective effects of Momordica charantia extract against hydrogen peroxide-induced cytotoxicity in human neuroblastoma SK-N-MC cells (산화적 스트레스에 대한 여주 (Momordica charantia) 추출물의 항산화 효과 및 세포사멸 억제 기전을 통한 신경세포보호효과)

  • Kim, Kkot Byeol;Lee, Seonah;Heo, Jae Hyeok;Kim, Jung hee
    • Journal of Nutrition and Health
    • /
    • v.50 no.5
    • /
    • pp.415-425
    • /
    • 2017
  • Purpose: Many studies have suggested that neuronal cells protect against oxidative stress-induced apoptotic cell death by polyphenolic compounds. We investigated the neuroprotective effects and the mechanism of action of Momordica charantia ethanol extract (MCE) against $H_2O_2-induced$ cell death of human neuroblastoma SK-N-MC cells. Methods: The antioxidant activity of MCE was measured by the quantity of total phenolic acid compounds (TPC), quantity of total flavonoid compounds (TFC), and 2,2-Diphenyl-1-pycrylhydrazyl (DPPH) radical scavenging activity. Cytotoxicity and cell viability were determined by CCK-8 assay. The formation of reactive oxygen species (ROS) was measured using 2,7-dichlorofluorescein diacetate (DCF-DA) assay. Antioxidant enzyme (SOD-1,2 and GPx-1) expression was determined by real-time PCR. Mitogen-activated protein kinases (MAPK) pathway and apoptosis signal expression was measured by Western blotting. Results: The TPC and TFC quantities of MCE were 28.51 mg gallic acid equivalents/extract g and 3.95 mg catechin equivalents/extract g, respectively. The $IC_{50}$ value for DPPH radical scavenging activity was $506.95{\mu}g/ml$ for MCE. Pre-treatment with MCE showed protective effects against $H_2O_2-induced$ cell death and inhibited ROS generation by oxidative stress. SOD-1,2 and GPx-1 mRNA expression was recovered by pre-treatment with MCE compared with the presence of $H_2O_2$. Pre-treatment with MCE inhibited phosphorylation of p38 and the JNK pathway and down-regulated cleaved caspase-3 and cleaved PARP by $H_2O_2$. Conclusion: The neuroprotective effects of MCE in terms of recovery of antioxidant enzyme gene expression, down-regulation of MAPK pathways, and inhibition apoptosis is associated with reduced oxidative stress in SK-N-MC cells.