• Title/Summary/Keyword: SK-N-MC

Search Result 45, Processing Time 0.033 seconds

Effects of Yukmijihwangwon on Hypoxia of Neuronal Cells (저산소상태에서 육미지황원의 뇌신경세포 보호효과에 대한 연구)

  • Kang, Bong-Joo;Hong, Seong-Gil;Cho, Dong-Wuk
    • Korean Journal of Oriental Medicine
    • /
    • v.7 no.1
    • /
    • pp.115-124
    • /
    • 2001
  • Yukmijihwangwon (YM) has been known to reinforce the vital essence and have antioxidant activities. This study was designed to examine the inhibitory effects of YM against in vitro hypoxia/reperfusion-induced inflammatory response. We have characterized the production of prostaglandin $E_2$ and arachidonic acid during hypoxia/reperfusion in the human neuroblastoma SK-N-MC and human monocytic macrophage U937 cells and the ingibitory effect of YM on these inflammation-related substance formation has been found out in this study. To investigate inhibition of COX expression by YM during hypoxia in vitro. This result suggested that YM used in this experiment reinforced antiinflammatory potentials and protected cells against hypoxia/reperfusion induced inflammatory response.

  • PDF

Enhancement of Methylene Blue-induced Cytotoxicity in Human Brain Tumor Cells by an Iron Chelator, Deferoxamine

  • Lee, Yong-Soo;Han, Suk-Kyu;Wurster, Robert D.
    • Archives of Pharmacal Research
    • /
    • v.18 no.3
    • /
    • pp.159-163
    • /
    • 1995
  • Previously, we have reported that methylene blue (MB) induces cytotoxicity in human brain tumor cells through the generation of free radicals. In this study the effect of deferoxamine (DFO), an iron chelator, on MB-induced cytotoxicity was investigated using SK-N-MC human neuroblastoma and U-373 MG human astrocytoma cells as model cellular systems. The cytotoxic effect of MB was potentiated by DFO. The potentiation effect of DFO was significantly blocked by either stoichiometric amounts of ferric ion, various antioxidants, hydroxyl radical scavengers or intracellular $Ca^{2+}$ release blockers. These results suggest that hydroxyl radical and intracellular $Ca^{2+}$ may act as important mediators of the enhanced cytotoxicity by MB and DFO. These results further suggest that the combined treatment with MB and DFO may be useful for the therapeutical applications of human brain tumors.

  • PDF

The antioxidative and neuroprotective effects of Bombusae concretio Salicea and phenolic compounds on neuronal cells (신경세포에서 천축황(天竺黃)과 페놀성 물질의 항산화 및 신경보호 효과)

  • Seo, Young-Jun;Jeong, Ji-Cheon
    • The Journal of Internal Korean Medicine
    • /
    • v.21 no.2
    • /
    • pp.219-225
    • /
    • 2000
  • 산화적인 스트레스가 여러가지 신경 및 비신경계에서의 병리원인으로 알려져 있다. 퇴행성 뇌질환에 대한 예방과 치료에는 항산화 방어기술이 주요대상이며 스테로이드 분자중에서 estrogen만이 산화적인 원인에 의한 신경세포사를 방어하는데 특이적인 효과를 가지고 있다. 본 연구는 천축황(天竺黃)의 항산화적 뇌신경 보호기전을 연구하는 것으로 신경세포주, 뇌세포막, 이의 산화적 정량실험법을 사용하여 천축황(天竺黃)이 갖는 항산화 및 신경보호활성이 소수성 페놀(phenolic molecules)성 물질과 유사함을 밝히게 되었다. 즉, 페놀성 물질로서 2,4,6-trimethylphenol, N-acetylserotonin, 및 5-hydroxyindole와 유사한 뇌신경 보호활성을 나타내었으며 천축황(天竺黃)은 생쥐의 N2a cell과 사람 SK-N-MC neuroblastoma cell에서 산화적인 글루탐산 독성에 대하여 보호를 하였다. 천축황(天竺黃)의 산화적 글루탐산 독성에 대한 보호활성은 과산화수소에 대한 것과 유사하였다. 이러한 항산화 활성은 $20\;{\mu}g/ml$에서, LDL의 산화적 보호 활성은 $5\;{\mu}g/ml$농도에서 발휘되었다 (최대활성은 $16\;{\mu}g/ml$). 이러한 결과는 천축황(天竺黃)이 노인성 치매에 보호효과가 있음을 시사하였다.

  • PDF

Protective effects of Chungpesagan-tang against ischemia/reperfusion induced cell injury (허혈/재관류 세포 손상에서 청폐사간탕의 보호 효과)

  • Hong, Seong-Gil;Kang, Bong-Joo;Kim, Yun-JIn;Kang, Sang-Mo;Cho, Dong-Wuk
    • Korean Journal of Oriental Medicine
    • /
    • v.5 no.1
    • /
    • pp.111-117
    • /
    • 1999
  • Free radicals are thought to be the most important cause of the reperfusion injury subsequent to ischemia. The antioxidant status of the tissue affected by ischemia-reperfusion is of great importance for the primary endogenous defense against the free radical induced injury. Therefore, antioxidant therapy has been shown to be beneficial in neurological disorders such as Alzheimer's disease and cerebral ischemia. In this study, the protective effects of Chungpesagan-tang (CST) was investigated against ischemia/reperfusion-induced cytotoxicity in SK-N-MC neuronal cells It was found out that low concentration of CST was highly effective in protecting neuronal cells against ischemia/reperfusion-induced cytotoxicity. The inhibitory effect of CST on malondialdehyde formation during ischemia/reperfusion-induced oxidative stress in SK-N-MC cells showed obvious dose-dependent responses. Also, CST showed relatively high inhibitory activity to xanthine oxidase induced by ischemia/reperfusion environment Therefore, it is thought that CST has both antioxidant and xanthine oxidase inhibitory effect and can be used for clinical applications for protection of neuronal cells from ischemia-reperfusion injury.

  • PDF

Mediation of Intracellular $Ca^{2+}$ in the Phospholipase $A_2-induced$ Cell Proliferation in Human Neuroblastoma Cells

  • Kim, Jung-Ae;Lee, Yong-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.2 no.4
    • /
    • pp.411-417
    • /
    • 1998
  • The role of phospholipase ($A_2\;PLA_2$) in tumor cell growth was investigated using SK-N-MC human neuroblastoma cells. 4-Bromophenacyl bromide (BPB) and mepacrine (Mep), known $PLA_2$ inhibitors, suppressed growth of the tumor cells in a dose-dependent manner without a significant cytotoxicity. Melittin (Mel), a $PLA_2$ activator, enhanced the cell growth in a concentration-dependent fashion. The growth-enhancing effects of Mel were significantly reversed by the co-treatment with $PLA_2$ inhibitors. In addition, Mel induced intracellular $Ca^{2+}$ release from internal stores like as did serum, a known intracellular $Ca^{2+}$ agonist in the tumor cells. Intracellular $Ca^{2+}$ release induced by these agonists was significantly blocked by $PLA_2$ inhibitors at growth-inhibitory concentrations. Arachidonic acid (AA), a product of the $PLA_2-catalyzed$ reaction, induced cell growth enhancement and intracellular $Ca^{2+}$ release. These effects of AA were significantly blocked by BAPTA/AM, an intracellular $Ca^{2+}$ chelator. Taken together, these results suggest that the modulation of $PLA_2$ activity may be one of the regulatory mechanisms of cell growth in human neuroblastoma cells. Intracellular $Ca^{2+}$ may act as a key mediator in the $PLA_2-induced$ growth regulation.

  • PDF

Ginsenoside Rg3 from Red Ginseng Prevents Damage of Neuronal Cells through the Phosphorylation of the Cell Survival Protein Akt

  • Joo, Seong-Soo;Won, Tae-Joon;Lee, Yong-Jin;Hwang, Kwang-Woo;Lee, Seon-Gu;Yoo, Yeong-Min;Lee, Do-Ik
    • Food Science and Biotechnology
    • /
    • v.15 no.2
    • /
    • pp.244-247
    • /
    • 2006
  • Neuronal cell death significantly contributes to neuronal loss in neurological injury and disease. Typically, neuronal loss or destruction upon exposure to neurotoxins, oxidative stress, or DNA damage causes neurodegenerative diseases such as Alzheimer's disease. In this study, we attempted to determine whether ginsenoside Rg3 from red ginseng has a neuroprotective effect via an anti-apoptotic role induced by S-nitroso-N-acetylpenicillamine (SNAP) at the molecular level. We also investigated the antioxidant effect of Rg3 using a metal-catalyzed reaction with $Cu^{2+}/H_2O_2$. Our results showed that Rg3 ($40-100\;{\mu}g/mL$) protected SK-N-MC neuroblastoma cells under cytotoxic conditions and effectively protected DNA from fragmentation. In the signal pathway, caspase-3, and poly (ADP-ribose) polymerase (PARP) were kept at an inactivated status when pretreated with Rg3 in all ranges. In particular, the important upstream p-Akt signal pathway was increased in a dose-dependent manner, which indicates that Rg3 may contribute to cell survival. We also found that oxidative stress can be mitigated by Rg3. Therefore, we have concluded that Rg3 plays a certain role in neurodegenerative pathogenesis via an anti apoptotic, antioxidative effect.

Influence of Yeoldahanso-tang on the Hypoxic Damage of Cultured Cerebral Neurons from mouse and SK-N-MC cells (열다한소탕(熱多寒少湯)이 저산소성(低酸素性) 대뇌신경세포(大腦神經細胞) 손상에 미치는 영향(影響))

  • Kim, Hyoung-Soon;Bae, Young-Chun;Lee, Sang-Min;Kim, Kyung-Yo;Won, Kyoung-Sook;Sihm, Gyue-Hearn;Park, Su-Jeong
    • Journal of Sasang Constitutional Medicine
    • /
    • v.15 no.1
    • /
    • pp.72-89
    • /
    • 2003
  • To elucidate the neuroprotective effect of Yeoldahanso-tang(YHT) on nerve cells damaged by hypoxia, the cytotoxic effects of exposure to hypoxia were determined by XTT(SODIUM3,3'-{I-[(PHENYLAMINO) CARBONYL]-3,4-TETRAZOLIUM}- BIS (4-METHOXY-6-NITRO) BENZENE SULFONIC ACID HYDRATE), NR(Neutral red), MTT(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and SRB(Sulforhodamin B) asssay. The activity of catalase and SOD(Superoxide dismutase) was measured by spectrophometry, and $TNF-{\alpha}$(Tumor cell necrosis $fector-{\alpha}$) and PKC(Protein kinase C) activity was measured after exposure to hypoxia and treatment of YHTWE. Also the neuroprotective effect of YHTWE was researched for the elucidatioion of neuroprotective mechanism. The results were as follows; 1. Hypoxia decreased cell viability measured by XTT, NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO2 for $2{\sim}26$ minutes in these cultures and YHTWE inhibited the decrease of cell viability. 2. H2O2 treatment decreased cell viability measured by MTT, and SRB assay when cultured cerebral neurons were exposed to 1-80 ${\mu}M$ for 6 hours, but YHTWE inhibited the decrease of cell viability. 3. Hypoxia decreased catalase and SOD activity, and also $TNF-{\alpha}$ and PKC activity in these cultured cerebral neurons, but YHTWE inhibited the decrease of the catalase and SOD activity in these cultures. 4. Hypoxia triggered the apoptosis via caspase activation and internucleosomal DNA fragmentation. Also hypoxia stimulate the release of cytochrome c forom mitochondria. YHTWE inhibited the apoptosis via caspase activation induced by hypoxia. From these results, it can be suggested that brain ischemia model induced hypoxia showed neurotoxicity on cultured mouse cerebral neurons, and the YHTWE has the neuroprotective effect in blocking the neurotoxicity induced by hypoxia in cultured mouse cerebral neurons.

  • PDF