• Title/Summary/Keyword: SIRAL

Search Result 2, Processing Time 0.172 seconds

Development of an Efficient Processor for SIRAL SARIn Mode

  • Lee, Dong-Taek;Jung, Hyung-Sup;Yoon, Geun-Won
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.335-346
    • /
    • 2010
  • Recently, ESA (European Space Agency) has launched CryoSAT-2 for polar ice observations. CryoSAT-2 is equipped with a SIRAL (SAR/interferometric radar altimeter), which is a high spatial resolution radar altimeter. Conventional altimeters cannot measure a precise three-dimensional ground position because of the large footprint diameter, while SIRAL altimeter system accomplishes a precise three-dimensional ground positioning by means of interferometric synthetic aperture radar technique. In this study, we developed an efficient SIRAL SARIn mode processing technique to measure a precise three-dimensional ground position. We first simulated SIRAL SARIn RAW data for the ideal target by assuming the flat Earth and linear flight track, and second accessed the precision of three-dimensional geopositioning achieved by the proposed algorithm. The proposed algorithm consists of 1) azimuth processing that determines the squint angle from Doppler centroid, and 2) range processing that estimates the look angle from interferometric phase. In the ideal case, the precisions of look and squint angles achieved by the proposed algorithm were about -2.0 ${\mu}deg$ and 98.0 ${\mu}deg$, respectively, and the three-dimensional geopositioning accuracy was about 1.23 m, -0.02 m, and -0.30 m in X, Y and Z directions, respectively. This means that the SIRAL SARIn mode processing technique enables to measure the three-dimensional ground position with the precision of several meters.

An Efficient Interferometric Radar Altimeter (IRA) Signal Processing to Extract Precise Three-dimensional Ground Coordinates (정밀 3차원 지상좌표 추출을 위한 IRA의 효율적인 신호처리 기법)

  • Lee, Dong-Taek;Jung, Hyung-Sup;Yoon, Geun-Won
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.5
    • /
    • pp.507-520
    • /
    • 2011
  • Conventional radar altimeter system measured directly the distance between the satellite and the ocean surface and frequently used by aircraft for approach and landing. The radar altimeter is good at flat surface like sea whereas it is difficult to determine precise three dimensional ground coordinates because the ground surface, unlike ocean, is very indented. To overcome this drawback of the radar altimeter, we have developed and validated the interferometric radar altimeter signal processing which is combined with new synthetic aperture and interferometric signal processing algorithm to extract precise three-dimensional ground coordinates. The proposed algorithm can accurately measure the three dimensional ground coordinates using three antennas. In a set of 70 simulations, the averages of errors in x, y and z directions were approximately -0.40 m, -0.02 m and 4.22 m, respectively and the RMSEs were about 3.40 m, 0.30 m and 6.20 m, respectively. The overall results represent that the proposed algorithm is effective for accurate three dimensional ground positioning.