• Title/Summary/Keyword: SIMS depth profile

Search Result 31, Processing Time 0.036 seconds

Correction of Secondary ion Mass Spectrometry depth profile distorted by oxygen flooding (Oxygen flooding에 의해 왜곡된 SIMS depth profile의 보정)

  • 이영진;정칠성;윤명노;이순영
    • Journal of the Korean Vacuum Society
    • /
    • v.10 no.2
    • /
    • pp.225-233
    • /
    • 2001
  • Distortion of Secondary Ion Mass Spectrometry(SIMS) depth profile, which is usually observed when the analysis is made using oxygen flooding on the surface of Si with oxide on it, has been corrected. The origin of distortion has been attributed to depth calibration error due to sputter rate difference and concentration calibration error due to relative sensitivity factor(RSF) difference between $SiO_2$ and Si layers, In order to correct depth calibration error, artifact in analysis of sodium ion on oxide was used to define the interface in SIMS depth profile and oxide thickness was measured with SEM and XPS. The differences of sputter rate and RSF between two layers have been attributed to volume swelling of Si substrate occurred by oxygen flooding induced oxidation. The corrected SIMS depth profiles showed almost the same results with those obtained without oxygen flooding.

  • PDF

Study of neutral beam characteristics using SIMS depth profile and improvement of neutral beam flux (SIMS depth profile을 이용한 중성빔 특성 분석 및 flux 향상방안)

  • Kim, Seong-U;Park, Byeong-Jae;Min, Gyeong-Seok;Gang, Se-Gu;Yeom, Geun-Yeong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.61-62
    • /
    • 2007
  • low angle forward reflected neutral beam etching system으로 식각한 후 SIMS depth profile을 이용하여 에너지 침투 깊이에 따른 중성빔 에너지를 분석하여 중성화 과정에서 에너지와 flux의 손실이 있었다. 기존의 two-grid 대신에 three-grid를 사용하여 에너지의 변화없이 이온 flux 및 중성빔 flux가 향상됨을 알 수 있었다.

  • PDF

Quantification of $Cu(In_xGa_{1-x})Se_2$ Solar Cell by SIMS

  • Jang, Jong-Shik;Hwang, Hye-Hyen;Kang, Hee-Jae;Min, Hyung-Sik;Han, Myung-Sub;Suh, Jung-Ki;Cho, Kyung-Haeng;Chung, Yong-Duck;Kim, Je-Ha;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.275-275
    • /
    • 2012
  • The relative composition of $Cu(InGa)Se_2$ solar cells is one of the most important measurement issues. However, quantitative analysis of multi-component alloy films is difficult by surface analysis methods due to severe matrix effect. In this study, quantitative depth profiling analysis of CIGS films was investigated by secondary ion mass spectrometry (SIMS). The compositions were measured by SIMS using the alloy reference relative sensitivity factors derived from the certified compositions and the total counting numbers of each element. The compositions measured by SIMS were linearly proportional to those by inductively coupled plasma-mass spectrometry (ICP-MS) using isotope dilution method. In this study, the quantification measured by ICP-MS method is compared with the composition calculated by SIMS depth profiles with AR-RSFs obtained from the reference. The SIMS depth profile of CIGS thin films according to the manufacturing condition was converted into compositional depth profile.

  • PDF

Conversion from SIMS depth profiling to compositional depth profiling of multi-layer films

  • Jang, Jong-Shik;Hwang, Hye-Hyen;Kang, Hee-Jae;Kim, Kyung-Joong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.347-347
    • /
    • 2011
  • Secondary ion mass spectrometry (SIMS) was fascinated by a quantitative analysis and a depth profiling and it was convinced of a in-depth analysis of multi-layer films. Precision determination of the interfaces of multi-layer films is important for conversion from the original SIMS depth profiling to the compositional depth profiling and the investigation of structure of multi-layer films. However, the determining of the interface between two kinds of species of the SIMS depth profile is distorted from original structure by the several effects due to sputtering with energetic ions. In this study, the feasibility of 50 atomic % definition for the determination of interface between two kinds of species in SIMS depth profiling of multilayer films was investigated by Si/Ge and Ti/Si multi-layer films. The original SIMS depth profiles were converted into compositional depth profiles by the relative sensitivity factors from Si-Ge and Si-Ti alloy reference films. The atomic compositions of Si-Ge and Si-Ti alloy films determined by Rutherford backscattering spectroscopy (RBS).

  • PDF

Effect of Surface Charging on the SIMS Depth Profile of Bismuth Titanate Thin Film (SIMS 분석조건이 Bismuth Titanate 박막의 깊이방향 조성 해석에 미치는 영향)

  • Kim, Jae Nam;Lee, Sang Up;Kwun, Hyug Dae;Shin, Kwang Soo;Chon, Uong;Park, Byung Ok;Cho, Sang Hi
    • Analytical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.486-493
    • /
    • 2001
  • The effect of SIMS analysis conditions such as mesh grid, offset voltage and ion species on the in-depth profile for bismuth titanate thin film was examined in terms of charging effect and detection limit. The results shows that the use of offset voltage -40 V reduces the charging effect and the detection limit. The employment of mesh grid in sample preparation leads to the reduction of the charging effect in small amount, but deteriorate the detection limit. Utilization of primary $O^-$ ion for SIMS analysis of bismuth titanate thin film showed almost the same effect as using offset voltage -40 V. However, it takes approximately triple acquisition time than using $O_2{^+}$ ion due to the poor beam current of the source in the experiment.

  • PDF

Properties of colored topaz by new surface treatment (새롭게 표면처리된 유색 토파즈의 특성)

  • Lee, Bohyun;Koo, Changsik;Yeon, Seokju;Choi, Hyunmin;Kim, Youngchool;Kim, Sunhee
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.81-85
    • /
    • 2013
  • We performed analysis of composition and structure of coating layers by using ED-XRF and TOF-SIMS for some passion topaz of Swarovski which developed recently as new surface treatment of TCF (thermal color fusion) technique. In addition, we compared differences between Ti-coated topaz (Mystic topaz) and new treated colored topazes (passion topaz) with magnification observation and simplified durability test. As a result, we can observe similar characteristic clues in Ti-coated topaz and passion topaz by magnified observation. According to results of depth profile by TOF-SIMS, we can know that topaz is treated by multi-layer coating or surface diffusion coating. Moreover, the passion topaz which is treated by chemical reaction between metal elements shows more stable chemical resistance and higher Mohs' hardness than Ti-coated topaz.

A study of profiles and annaealing behavior of As and Sb by MeV implantation in silicon (실리콘에 MeV로 이온주입된 AS 와 Sb의 profile과 열처리에 의한 이온의 거동에 관한 연구)

  • 정원채
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.3
    • /
    • pp.46-55
    • /
    • 1998
  • This stud demonstrates the profiles of heavy ions (As, Sb) in silicon by high energy (1~10 MeV) implantation. Implanted profiles were measured by SIMS (Cameca 4f) and compared with simulation results (TRIM) program and analytical description method using Pearson function). The experimental results have a little bit deviation with simulation data in the case of As high energy implatation. But in the case of Sb, the experimental results are in good agreement with TRIM data. SIMS profiles are perfectly fitted with a analytical description method only using one pearson function in Sb implantation. but in the case of As, fitted profilesshow with a little bit deviations by channeling effects of SIMS profiles. Thermal annealing for electrical activation of implanted ions was carried out by furnace annealing and RTA(Rapid Thermal Annealing). Concentration-depth profile after heat treatement were measured by SR(Spreading Resistance) method.

  • PDF

Study on Structural properties of As Ion -Implanted Si (As이온이 주입된 Si의 구조적 특성 연구)

  • 믄영희;배인호;김말문;한병국;김창수;홍승수;신용현;정광화
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.3
    • /
    • pp.218-222
    • /
    • 1996
  • STrained layers and strain depth profile of high dose As ion implanted (100) si wafer annealed at various temperatures have been investigated by means of X-ray double crystal diffractometry (X-ray DCD). The results obtained by x-ray rocking curve analysis showed a defect layer at the original amorphous /crystalline interface of 1400$\AA$ depth. In addition arsenic ion concentrtion profiles and defect distributions in depth were obtained by the SIMS and TRIM -code simulation . the positive strain depth profile determined from the rocking curve analysis were only presented under 0.14 $\mu$m from the surface for samples ananelaed at $600^{\circ}C$. The results was shown that the thickness of amprphous layer is 0.14 $\mu$m indirectry, and it was good agreement with the TRIM -Code simulation. Additionally, it could be thought that the positive strain have been affected residual intersitial atoms under the amorphous/crystalline interface formed by ion implantation.

  • PDF

A study on the ion-concentraion distribution using by FIB irradiated on amorphous $Se_{75}Ge_{25}$ Thin film (비정질 $Se_{75}Ge_{25}$ 박막의 $Ga^{+}$ 소스를 사용한 FIB 입사에 따른 이온농도 분포에 관한 연구)

  • 임기주;정홍배;이현용
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.193-199
    • /
    • 2000
  • As an energetic focused-ion beam(FIB) is irradiated on an inorganic amorphous thin film a majority of ions without a reflection at surface, is randomly collided with constituent atoms in thin film. but their distribution exhibits generally a systematic form of distribution. In our previous paper we reported the concentration distribution and the transmission per unit depth of Ga$^{+}$ ions penetrated int a-Se$_{75}$ /Ge$_{25}$ thin film using the LSS-based calculation. In this paper these simulated results are compared with those obtained by a conventional profile code(ISC) and a practical SIMS profile. Then the results of LSS-based calculation have only a small difference with those of code and SIMS Especially. in the case of Ga$^{+}$-FIB with an accelerating energy of 15keV. the depth of the maximum ion concentration is coincident with each other in an error range of $\pm$5$\AA$.EX>.

  • PDF