• Title/Summary/Keyword: SIMP

Search Result 42, Processing Time 0.02 seconds

Automatic Generation of Dynamic Equations for Robotic Manipulators using Personal Computer (개인용 컴퓨터를 이용한 로보트 매니퓨레이터의 동적 방정식의 자동새성에 관한연구)

  • 황창선;최영규;원태현;서종일
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.4
    • /
    • pp.226-231
    • /
    • 1988
  • A program is developed for generating the dynamic equations for the robotic manipulators using the symbolic language muSIMP/ MATH. The muSIMP/ MATH is a LISP-based computer. algebra package, devoted to the manipulation of algebraic expressions including numbers, variables, functions, and matrices. The muSIMP-MATH can operate on personal computer such as IBM-PC. The program is developed, based on the Lagrange-Euler formulation. This program is applicable to the manipulators with any number of degrees of freedom, and maximum number of degrees of freedom is set to be six in this program.

  • PDF

The Role of S-Shape Mapping Functions in the SIMP Approach for Topology Optimization

  • Yoon, Gil-Ho;Kim, Yoon-Young
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.10
    • /
    • pp.1496-1506
    • /
    • 2003
  • The SIMP (solid isotropic material with penalization) approach is perhaps the most popular density variable relaxation method in topology optimization. This method has been very successful in many applications, but the optimization solution convergence can be improved when new variables, not the direct density variables, are used as the design variables. In this work, we newly propose S-shape functions mapping the original density variables nonlinearly to new design variables. The main role of S-shape function is to push intermediate densities to either lower or upper bounds. In particular, this method works well with nonlinear mathematical programming methods. A method of feasible directions is chosen as a nonlinear mathematical programming method in order to show the effects of the S-shape scaling function on the solution convergence.

SIMP: SLICKS AS INDICATORS FOR MARINE PROCESSES

  • Mitnik, Leonid M.;Gade, Martin;Ermakov, Stanislav A.;Lavrova, Olga Yu.;Silva, Jose B.C. da;Woolf, David K.
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.950-953
    • /
    • 2006
  • SIMP is an international project funded by INTAS aimed at improving the information content, which can be inferred from multi-sensor satellite imagery of marine coastal areas. Scientific teams from Germany, UK, Portugal, and Russia focus on the development of novel tools for marine remote sensing of the coastal zone. In particular, the project teams' benefit from the fact that surface films may enhance the signatures of hydrodynamic processes such as plumes, internal waves, eddies, etc., on microwave, optical, and infrared imagery. The project's objectives are to develop a robust methodology for identifying slick-related phenomena/processes through their surface signatures and thereby, to improve the discrimination capabilities between slicks and other oceanic and atmospheric phenomena by taking into account information gained from satellite imagery quasi-simultaneously recorded at microwave, visible and IR wavelengths. The results of the two project years are summarized. Examples are given for the project’s web presentation, laboratory and field experiments, and of the analyses of various satellite data.

  • PDF

Topology optimization of steel plate shear walls in the moment frames

  • Bagherinejad, Mohammad Hadi;Haghollahi, Abbas
    • Steel and Composite Structures
    • /
    • v.29 no.6
    • /
    • pp.771-783
    • /
    • 2018
  • In this paper, topology optimization (TO) is applied to find a new configuration for the perforated steel plate shear wall (PSPSW) based on the maximization of reaction forces as the objective function. An infill steel plate is introduced based on an experimental model for TO. The TO is conducted using the sensitivity analysis, the method of moving asymptotes and SIMP method. TO is done using a nonlinear analysis (geometry and material) considering the buckling. The final area of the optimized plate is equal to 50% of the infill plate. Three plate thicknesses and three length-to-height ratios are defined and their effects are investigated in the TO. It indicates the plate thickness has no significant impact on the optimization results. The nonlinear behavior of optimized plates under cyclic loading is studied and the strength, energy and fracture tendency of them are investigated. Also, four steel plates including infill plate, a plate with a central circle and two types of the multi-circle plate are introduced with equal plate volume for comparing with the results of the optimized plate.

Evaluation of structural outrigger belt truss layouts for tall buildings by using topology optimization

  • Lee, Dong-Kyu;Kim, Jin-Ho;Starossek, Uwe;Shin, Soo-Mi
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.711-724
    • /
    • 2012
  • The goal of this study is to conceptually orientate optimized layouts of outrigger belt trusses which are in widespread use today in the design of tall buildings by strut-and-tie truss models utilizing a topology optimization method. In this study unknown strut-and-tie models are realized by using a typical SIMP method of topology optimization methods. In tradition strut-and-tie model designs find the appropriate strut-and-tie trusses along force paths with respect to elastic stress distribution, and then engineers or designers determine the most proper truss models by experience and intuition. It is linked to a trial-and-error procedure based on heuristic strategies. The presented strut-and tie model design by using SIMP provides that belt truss models are automatically and robustly produced by optimal layout information of struts-and-ties conforming to force paths without any trial-and-error. Numerical applications are studied to verify that outrigger belt trusses for tall buildings are optimally chosen by the proposed method for both static and dynamic responses.

Topology optimization with functionally graded multi-material for elastic buckling criteria

  • Minh-Ngoc Nguyen;Dongkyu Lee;Joowon Kang;Soomi Shin
    • Steel and Composite Structures
    • /
    • v.46 no.1
    • /
    • pp.33-51
    • /
    • 2023
  • This research presents a multi-material topology optimization for functionally graded material (FGM) and nonFGM with elastic buckling criteria. The elastic buckling based multi-material topology optimization of functionally graded steels (FGSs) uses a Jacobi scheme and a Method of Moving Asymptotes (MMA) as an expansion to revise the design variables shown first. Moreover, mathematical expressions for modified interpolation materials in the buckling framework are also described in detail. A Solid Isotropic Material with Penalization (SIMP) as well as a modified penalizing material model is utilized. Based on this investigation on the buckling constraint with homogenization material properties, this method for determining optimal shape is presented under buckling constraint parameters with non-homogenization material properties. For optimal problems, minimizing structural compliance like as an objective function is related to a given material volume and a buckling load factor. In this study, conflicts between structural stiffness and stability which cause an unfavorable effect on the performance of existing optimization procedures are reduced. A few structural design features illustrate the effectiveness and adjustability of an approach and provide some ideas for further expansions.

Evaluation for Biomechanical Effects of Metatarsal Pad and Insole on Gait (보행 중 중족골 패드와 인솔의 생체역학적 영향성 평가)

  • Choi, Jung-Kyu;Park, In-Sik;Lee, Hong-Jae;Won, Yong-Gwan;Kim, Jung-Ja
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.487-494
    • /
    • 2011
  • The purpose of this study was to evaluate the effects of metatarsal pad (MP) compared with barefoot and MP with using different insoles on gait. 15 healthy females who had no history of injury in the lower extremity with an average age of 22.7 year(SD=1.35), height of 160 cm(SD=3.4), weight of 48.8 kg(SD=5.52) and average foot size of 232.5 mm(SD=6.8) participated in this study as the subjects. The subjects walked on a treadmill under four different experimental conditions: 1) walking with barefoot, 2) walking wearing MP 3) walking wearing a soft insole with MP(SIMP), 4) walking wearing a rigid insole with MP(HIMP). During walking, foot pressure data such as force, contacting area, peak pressure, and mean pressure was collected using Pedar-X System(Novel Gmbh, Germany) and EMG activity of lower limb muscles such as tibialis anterior(TA), lateral gastrocnemius(LG), rectus femoris(RF), and musculus biceps femoris(MBF) was gathered using Delsys EMG Work System(Delsys, USA). Collected data was then analyzed using paired t-test in order to investigate the effects of each of experimental conditions. As a result of the analysis, when MP and HIMP were equipped, overall contacting area was increased while the force, peak pressure and the mean pressure were decreased. Especially, when the SIMP was equipped, every data were significantly decreased. In case of EMG, wearing MP, SIMP and HIMP made three muscles(TA, LG, RF)'s activity decrease. A result of the analysis will be able to apply for manufacturing functional shoes, diabetes shoes, senior shoes and lower extremity orthosis. Significance of the study due to a metatarsal pad and the insole is to analyze the changes in muscle strength.

Incremental Interpreter based on Action Equations (작용 식 기반 점진 해석기)

  • Han, Jeong-Ran;Lee, Gi-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.8
    • /
    • pp.1018-1027
    • /
    • 1999
  • 속성 문법은 언어의 정적인 의미구조를 표현하는 형식적인 표기법으로 동적인 의미구조를 표현하기는 부적절하다. 동적 의미구조를 잘 명세하고 명세된 언어를 구현하기 위해서 기존의 속성 문법을 확장하여 언어 구현에 필요한 동적인 작용들(actions)을 잘 표현해야 한다. 본 논문에서는 속성 문법을 확장하여 정적이고 동적인 의미구조를 잘 표현할 수 있는 새로운 작용 식(action equation)을 제시한다. 제시된 작용 식(action equation)의 동적인 의미 구조로 부터 SIMP 언어의 점진 해석기(incremental interpreter)를 설계하고 구현한다. 점진 해석기는 언어 기반의 프로그래밍 환경에서 수정된 부분만을 번역하여 프로그램의 전체 실행 결과를 얻는 해석기를 의미한다. 본 해석기는 SUN 1000에서 Lex와 Yacc을 사용해서 C 언어로 설계하고 구현하였다. 예제 프로그램을 실행시켰을 때 배정 문이나 IF문의 경우는 매우 효율적이었고 Loop의 경우는 재실행될 필요가 있는 영향받는 명령문들이 적을수록 점진 해석이 더 효율적으로 수행된다.Abstract Attribute grammars are a formal notation which expresses the static semantics of programming languages, but they are not suitable for expressing dynamic semantics. To describe dynamic semantics and implement a specified language, we extend attribute grammars and present new action equations which describe static and dynamic semantics. The incremental interpreter of a SIMP language is designed and implemented from the dynamic semantics of presented action equations. The incremental interpreter is to translate only modified part in the language-based programming environments and have results of whole program.Our interpreter is implemented in C with Lex and Yacc on SUN 1000. When we execute example programs, the incremental evaluation of any assignment and IF statements executes efficiently. But in the case of loop, we execute efficiently when the effected statements to be reexecuted in the loop are of small number.

Optimal Design of Gangway Connections for the High Speed Railway Vehicle (고속철도차량 갱웨이 통로연결막의 최적설계)

  • Kim, Chul-Su
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.7
    • /
    • pp.4087-4092
    • /
    • 2014
  • The gangway connection of the articulated high speed railway vehicles (HSRV) is a double wrinkled rubber component to seal the air of the corridor under a range of angular deviations between the carriage end parts. From the results of non-linear structural analysis, one of the severe loading conditions for the connection is mixed mode (rolling+yawing) angular displacements while passing through the small-radius curved siding track of the HSRV depot. In this study, to ensure the safety enhancement of the component, the optimal design for the cross section of that was performed using the Solid Isotropic Material with Penalization (SIMP) method. Nonlinear finite element analysis confirmed that the decreases in the maximum principal strain of the optimized design under rolling and mixed modes are 68% and 39%, respectively, compared to the initial design.

Material Topology Optimization Design of Structures using SIMP Approach Part II : Initial Design Domain with Topology of Partial Solids (SIMP를 이용한 구조물의 재료 위상 최적설계 Part II : 부분적인 솔리드 위상을 가지는 초기 설계영역)

  • Lee, Dong-Kyu;Park, Sung-Soo;Shin, Soo-Mi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • Discrete topology optimization processes of structures start from an initial design domain which is described by the topology of constant material densities. During optimization procedures, the structural topology changes in order to satisfy optimization problems in the fixed design domain, and finally, the optimization produces material density distributions with optimal topology. An introduction of initial holes in a design domain presented by Eschenauer et at. has been utilized in order to improve the optimization convergence of boundary-based shape optimization methods by generating finite changes of design variables. This means that an optimal topology depends on an initial topology with respect to topology optimization problems. In this study, it is investigated that various optimal topologies can be yielded under constraints of usable material, when partial solid phases are deposited in an initial design domain and thus initial topology is finitely changed. As a numerical application, structural topology optimization of a simple MBB-Beam is carried out, applying partial circular solid phases with varying sizes to an initial design domain.