• Title/Summary/Keyword: SIMO

Search Result 79, Processing Time 0.025 seconds

Study on the Optimal Release Condition of Wafer Level Molding Process using Plasma Surface Treatment Method (플라즈마 표면처리 방법을 이용한 웨이퍼레벨 몰딩 공정용 기판의 최적 이형조건 도출)

  • Yeon, Simo;Park, Jeonho;Lee, Nukkyu;Park, Sukhee;Lee, Hyejin
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.1
    • /
    • pp.13-17
    • /
    • 2015
  • In wafer level molding progress, the thermal releasing failure phenomenon is shown up as the important problem. This phenomenon can cause the problem including the warpage, crack of the molded wafer. The thermal releasing failure is due to the insufficiency of adhesion strength degradation of the molding tape. To solve this problem, we studied experimental method increasing the release property of the molding tape through the plasma surface treatment on the wafer substrate. In this research, the vacuum plasma treatment system is used for release property improvement of the molding tape and controls the operating condition of the hydrophilic($O_2$, 100kW, 10min) and hydrophobic($C_2F_6$, 200kW, 10min). In order to perform the peeling test for measuring the releasing force precisely, we remodel the micro scale material property evaluation system developed by Korea institute of industrial technology. In case of hydrophilic surface treatment on the wafer substrate, we can figure out the releasing property of molding tape increase. In order to grasp the effect that it reaches to the release property increase when repeating the hydrophilic treatment, we make an experiment with twice treatment and get the result to increase about 12%. We find out the hydrophilic surface treatment method using plasma can improve releasing property of molding tape in the wafer level molding process.

Performance Improvement analysis of Acoustic Communication System using Receive Diversity (수신 다이버시티를 이용한 음향 통신 시스템의 성능 향상 분석)

  • Bok, Jun-Yeong;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3A
    • /
    • pp.198-204
    • /
    • 2011
  • Acoustic communication system is a transmission technology sending sound and data simultaneously. However, data signal can be audible in this system when data is transmitted with high transmission power. The more transmission power is reduced, the more distance that can transmit data is shortened. Therefore, the study that increase the transmission distance is needed. In this paper, we would like to increase transmission distance by adapting receive diversity in acoustic communication system. We measure received performance of both proposed system and Single Input Sing Output (SISO) system according to distance with same transmission power. When SISO satisfies Bit Error Rate (BER) of $7{\times}10^{-3}$ at about 2m, Selection Combining (SC) technique satisfies 2 meters, and Equal Gain Combining (EGC) technique satisfies 4 meters.

Digitally Controlled Single-inductor Multiple-output Synchronous DC-DC Boost Converter with Smooth Loop Handover Using 55 nm Process

  • Hayder, Abbas Syed;Park, Young-Jun;Kim, SangYun;Pu, Young-Gun;Yoo, Sang-Sun;Yang, Youngoo;Lee, Minjae;Hwang, Keum Choel;Lee, Kang-Yoon
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.821-834
    • /
    • 2017
  • This paper reports on a single-inductor multiple-output step-up converter with digital control. A systematic analog-to-digital-controller design is explained. The number of digital blocks in the feedback path of the proposed converter has been decreased. The simpler digital pulse-width modulation (DPWM) architecture is then utilized to reduce the power consumption. This architecture has several advantages because counters and a complex digital design are not required. An initially designed unit-delay cell is adopted recursively for the construction of coarse, intermediate, and fine delay blocks. A digital limiter is then designed to allow only useful code for the DPWM. The input voltage is 1.8 V, whereas output voltages are 2 V and 2.2 V. A co-simulation was also conducted utilizing PowerSim and Matlab/Simulink, whereby the 55 nm process was employed in the experimental results to evaluate the performance of the architecture.

Climate Warming and Occupational Heat and Hot Environment Standards in Thailand

  • Phanprasit, Wantanee;Rittaprom, Kannikar;Dokkem, Sumitra;Meeyai, Aronrag C.;Boonyayothin, Vorakamol;Jaakkola, Jouni J.K.;Nayha, Simo
    • Safety and Health at Work
    • /
    • v.12 no.1
    • /
    • pp.119-126
    • /
    • 2021
  • Background: During the period 2001 to 2016, the maximum temperatures in Thailand rose from 38-41℃ to 42-44℃. The current occupational heat exposure standard of Thailand issued in 2006 is based on wet bulb globe temperature (WBGT) defined for three workload levels without a work-rest regimen. This study examined whether the present standard still protects most workers. Methods: The sample comprised 168 heat acclimatized workers (90 in construction sites, 78 in foundries). Heart rate and auditory canal temperature were recorded continuously for 2 hours. Workplace WBGT, relative humidity, and wind velocity were monitored, and the participants' workloads were estimated. Heat-related symptoms and signs were collected by a questionnaire. Results: Only 55% of the participants worked in workplaces complying with the heat standard. Of them, 79% had auditory canal temperature ≤ 38.5℃, compared with only 58% in noncompliant workplaces. 18% and 43% of the workers in compliant and noncompliant workplaces, respectively, had symptoms from heat stress, the trend being similar across all workload levels. An increase of one degree (C) in WBGT was associated with a 1.85-fold increase (95% confidence interval: 1.44-2.48) in odds for having symptoms. Conclusion: Compliance with the current occupational heat standard protects 4/5 of the workers, whereas noncompliance reduces this proportion to one half. The reasons for noncompliance include the gaps and ambiguities in the law. The law should specify work/rest schedules; outdoor work should be identified as an occupational heat hazard; and the staff should include occupational personnel to manage heat stress in establishments involving heat exposure.

Sensitivity and uncertainty quantification of neutronic integral data in the TRIGA Mark II research reactor

  • Makhloul, M.;Boukhal, H.;Chakir, E.;El Bardouni, T.;Lahdour, M.;Kaddour, M.;Ahmed, Abdulaziz;Arectout, A.;El Yaakoubi, H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.523-531
    • /
    • 2022
  • In order to study the sensitivity and the uncertainty of the Moroccan research reactor TRIGA Mark II, a model of this reactor has been developed in our ERSN laboratory for use with the N-Particle MCNP Monte Carlo transport codes (version 6). In this article, the sensitivities of the effective multiplication factor of this reactor are evaluated using the ENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0 libraries and in 44 energy groups, for the cross sections of the fuel (U-235 and U-238) and the moderator (H-1 and O-16). However, the quantification of the uncertainty of the nuclear data is performed using the nuclear code NJOY99 for the generation and processing of covariance matrices. On the one hand, the highest uncertainty deviations, calculated using the ENDFB-VII.1 and JENDL4.0 evaluations, are 2275, 386 and 330 pcm respectively for the reactions U235(n, f), $ U_{235}(n\bar{\nu})$ and H1(n, γ). On the other hand, these differences are very small for the neutron reactions of O-16 and U-238. Regarding the neutron spectra, in CT-mid plane, they are very close for the three evaluations (ENDF/B-VII.0, ENDF/B-VII.1 and JENDL-4.0). These spectra present two peaks (thermal and fission) around the energies 0.05 eV and 1 MeV.

Feasibility study of the beating cancellation during the satellite vibration test

  • Bettacchioli, Alain
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.2
    • /
    • pp.225-237
    • /
    • 2018
  • The difficulties of satellite vibration testing are due to the commonly expressed qualification requirements being incompatible with the limited performance of the entire controlled system (satellite + interface + shaker + controller). Two features cause the problem: firstly, the main satellite modes (i.e., the first structural mode and the high and low tank modes) are very weakly damped; secondly, the controller is just too basic to achieve the expected performance in such cases. The combination of these two issues results in oscillations around the notching levels and high amplitude beating immediately after the mode. The beating overshoots are a major risk source because they can result in the test being aborted if the qualification upper limit is exceeded. Although the abort is, in itself, a safety measure protecting the tested satellite, it increases the risk of structural fatigue, firstly because the abort threshold has been already reached, and secondly, because the test must restart at the same close-resonance frequency and remain there until the qualification level is reached and the sweep frequency can continue. The beat minimum relates only to small successive frequency ranges in which the qualification level is not reached. Although they are less problematic because they do not cause an inadvertent test shutdown, such situations inevitably result in waiver requests from the client. A controlled-system analysis indicates an operating principle that cannot provide sufficient stability: the drive calculation (which controls the process) simply multiplies the frequency reference (usually called cola) and a function of the following setpoint, the ratio between the amplitude already reached and the previous setpoint, and the compression factor. This function value changes at each cola interval, but it never takes into account the sensor signal phase. Because of these limitations, we firstly examined whether it was possible to empirically determine, using a series of tests with a very simple dummy, a controller setting process that significantly improves the results. As the attempt failed, we have performed simulations seeking an optimum adjustment by finding the Least Mean Square of the difference between the reference and response signal. The simulations showed a significant improvement during the notch beat and a small reduction in the beat amplitude. However, the small improvement in this process was not useful because it highlighted the need to change the reference at each cola interval, sometimes with instructions almost twice the qualification level. Another uncertainty regarding the consequences of such an approach involves the impact of differences between the estimated model (used in the simulation) and the actual system. As limitations in the current controller were identified in different approaches, we considered the feasibility of a new controller that takes into account an estimated single-input multi-output (SIMO) model. Its parameters were estimated from a very low-level throughput. Against this backdrop, we analyzed the feasibility of an LQG control in cancelling beating, and this article highlights the relevance of such an approach.

Wear Problem Improvement Manufacture Technology of Ignitor Tip Component Using 3D Printing Technology (발전소 점화자 팁 부품의 마모 문제 해결을 위한 3D 프린팅 기술을 이용한 부품 제조기술개발)

  • Lee, Hye-Jin;Yeon, Simo;Son, Yong;Lee, Nak-Kyu
    • Journal of Institute of Convergence Technology
    • /
    • v.6 no.2
    • /
    • pp.35-40
    • /
    • 2016
  • Ignitor tip is a component of burner to start the burning process in power plant. This is used to ignite the coal to a constant operating state by fuel mixed with air and kerosene. This component is composed of three components so that air and kerosene are mixed in the proper ratio and injected uniformly. Because the parts with the designed shape are manufactured in the machining process, they have to be made of three parts. These parts are designed to have various functions in each part. The mixing part mixes the supplied air and kerosene through the six holes and sends it to the injecting part at the proper ratio. The inject part injects mixed fuel, which is led to have a constant rotational direction in the connecting part, to the burner. And the connecting plate that the mixed fuel could rotate and spray is assembled so that the flame can be injected uniformly. But this part causes problems that are worn by vibration and rotation because it is mechanically assembled between the mixing part and the inject part. In this study, 3D printing method is used to integrate a connecting plate and an inject part to solve this wear problem. The 3D printing method could make this integrated part because the process is carried out layer by layer using a metal powder material. The part manufactured by 3D printing process should perform the post process such as support removal and surface treatment. However, while performing the 3D printing process, the material properties of the metal powders are changed by the laser sintering process. This change in material properties makes the post process difficult. In consideration of these variables, we have studied the optimization of manufacturing process using 3D printing method.

Model Identification for Control System Design of a Commercial 12-inch Rapid Thermal Processor (상업용 12인치 급속가열장치의 제어계 설계를 위한 모델인식)

  • Yun, Woohyun;Ji, Sang Hyun;Na, Byung-Cheol;Won, Wangyun;Lee, Kwang Soon
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.486-491
    • /
    • 2008
  • This paper describes a model identification method that has been applied to a commercial 12-inch RTP (rapid thermal processing) equipment with an ultimate aim to develop a high-performance advanced controller. Seven thermocouples are attached on the wafer surface and twelve tungsten-halogen lamp groups are used to heat up the wafer. To obtain a MIMO balanced state space model, multiple SIMO (single-input multiple-output) identification with highorder ARX models have been conducted and the resulting models have been combined, transformed and reduced to a MIMO balanced state space model through a balanced truncation technique. The identification experiments were designed to minimize the wafer warpage and an output linearization block has been proposed for compensation of the nonlinearity from the radiation-dominant heat transfer. As a result from the identification at around 600, 700, and $800^{\circ}C$, respectively, it was found that $y=T(K)^2$ and the state dimension of 80-100 are most desirable. With this choice the root-mean-square value of the one-step-ahead temperature prediction error was found to be in the range of 0.125-0.135 K.

From Radon and Thoron Measurements, Inhalation Dose Assessment to National Regulation and Radon Action Plan in Cameroon

  • Saidou;Shinji Tokonami;Masahiro Hosoda;Augustin Simo;Joseph Victor Hell;Olga German;Esmel Gislere Oscar Meless
    • Journal of Radiation Protection and Research
    • /
    • v.47 no.4
    • /
    • pp.237-245
    • /
    • 2022
  • Background: The current study reports measurements of activity concentrations of radon (220Rn) and thoron (220Rn) in dwellings, followed by inhalation dose assessment of the public, and then by the development of regulation and the national radon action plan (NRAP) in Cameroon. Materials and Methods: Radon, thoron, and thoron progeny measurements were carried out from 2014 to 2017 using radon-thoron discriminative detectors (commercially RADUET) in 450 dwellings and thoron progeny monitors in 350 dwellings. From 2019 to 2020, radon track detectors (commercially RADTRAK) were deployed in 1,400 dwellings. It was found that activity concentrations of radon range in 1,850 houses from 10 to 2,620 Bq/㎥ with a geometric mean of 76 Bq/㎥. Results and Discussion: Activity concentrations of thoron range from 20 to 700 Bq/㎥ with a geometric mean of 107 Bq/㎥. Thoron equilibrium factor ranges from 0.01 to 0.6, with an arithmetic mean of 0.09 that is higher than the default value of 0.02 given by UNSCEAR. On average, 49%, 9%, and 2% of all surveyed houses have radon concentrations above 100, 200, and 300 Bq/㎥, respectively. The average contribution of thoron to the inhalation dose due to radon and thoron exposure is about 40%. Thus, thoron cannot be neglected in dose assessment to avoid biased results in radio-epidemiological studies. Only radon was considered in the drafted regulation and in the NRAP adopted in October 2020. Reference levels of 300 Bq/㎥ and 1,000 Bq/㎥ were recommended for dwellings and workplaces. Conclusion: Priority actions for the coming years include the following: radon risk mapping, promotion of a protection policy against radon in buildings, integration of the radon prevention and mitigation into the training of construction specialists, mitigation of dwellings and workplaces with high radon levels, increased public awareness of the health risks associated with radon, and development of programs on the scientific and technical aspects.