• Title/Summary/Keyword: SILS(Software-in-the-loop simulation)

Search Result 13, Processing Time 0.016 seconds

Study on Development of Virtual Components for Active Air Suspension System Based on HILS for Commercial Vehicle (상용차용 HILS기반 능동형 공기현가 시스템의 가상 Components 개발에 관한 연구)

  • Ko, Youngjin;Park, Kyungmin;Baek, Ilhyun;Kim, Geunmo;Lee, Jaegyu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.26-36
    • /
    • 2013
  • Purpose of this study is to develop virtual components and environment for developing a controller of an Active Air Suspension System in laboratory that slough off existing development environment using real vehicle test. This paper presents an air spring modeling and analysis of air suspension system for a commercial vehicle. Preferentially, It was performed vehicle test for pneumatic system and an air spring for characteristic analysis of system. Each component of an air spring suspension system was developed through emulations and modeling of system for pressure and height sensors in the basis on test results in SILS environment. Non-linear characteristics of air spring are accounted for using the measured data. Also, pressure and volume relations for vehicle hight control is considered. After performance verification of virtual model was performed, we developed virtual environment based on HILS for an Active Air Suspension System. We studied estimation and verification technology for control algorithm that developed.

PLC Program Monitoring for Manufacturing Systems Using PLC Signal Time Difference (PLC 신호의 시간차이를 이용한 자동화 공정의 PLC프로그램 모니터링)

  • Seong, Kil-Young;Han, Kwan-Hee;Pyun, Jai-Jeong;Wang, Gi-Nam;Park, Sang-Chul
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.3
    • /
    • pp.176-185
    • /
    • 2009
  • Modern manufacturing systems consist of highly automated manufacturing devices, and they are controlled by complicated PLC programs. To make sure the achievement of the control objectives of a manufacturing system, it is very important to monitor the dynamic system behaviors of the manufacturing system. In this paper, we propose a monitoring methodology of a PLC program based on the Software In the Loop Simulation(SILS), which makes use of the time gap information between PLC signals. The errors relevant with PLC signals can be found using the proposed methodology, comparing a normal PLC signal trajectory with a target PLC signal trajectory. The proposed methodology has been implemented and tested with simple examples.

The Construction Method for Virtual Drone System (가상 드론 시뮬레이터 구축을 위한 시스템 구성)

  • Lee, Taek Hee
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.13 no.6
    • /
    • pp.124-131
    • /
    • 2017
  • Recently, drone is extending its range of usability. For example, the delivery, agriculture, industry, and entertainment area take advantage of drone mobilities. To control real drones, it needs huge amount of drone control training steps. However, it is risky; falling down, missing, destroying. The virtual drone system can avoid such risks. We reason that what kinds of technologies are required for building the virtual drone system. First, it needs that the virtual drone authoring tool that can assemble drones with the physical restriction in the virtual environment. We suggest that the drone assembly method that can fulfill physical restrictions in the virtual environment. Next, we introduce the virtual drone simulator that can simulate the assembled drone moves physically right in the virtual environment. The simulator produces a high quality rendering results more than 60 frames per second. In addition, we develop the physics engine based on SILS(Software in the loop simulation) framework to perform more realistic drone movement. Last, we suggest the virtual drone controller that can interact with real drone controllers which are commonly used to control real drones. Our virtual drone system earns 7.64/10.0 user satisfaction points on human test: the test is done by one hundred persons.