• Title/Summary/Keyword: SIGNAL SCAN

Search Result 334, Processing Time 0.022 seconds

Simulation of Target Detection using UV and IR Band Signals (UV와 IR 대역 신호를 이용한 표적 신호 검출 시뮬레이션)

  • Du, Gyeong-Su;O, Jeong-Su;Jang, Seong-Gap;Hong, Hyeon-Gi;Seo, Dong-Seon;Choe, Jong-Su
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.79-88
    • /
    • 2001
  • The target such as aircraft operates flares to protect itself from the missile. In general, Infra-red(IR) flares that are hot bodies radiating energy considerably greater than it does, so cause the missile to guide the flare instead of the target. For a precise target tracking in spite of a presence of flares, therefore, the seeker should discriminate the target signal from various clutters including the flare and the background. In this paper, we simulated 2-color rosette scan seeker using IR and UV(UltraViolet) bands. In each wave band, we analyzed the radiant distributions of the target, the flare, and background. These results showed that a simultaneous process in two bands can detect precisely the target.

  • PDF

Design and Implementation of PC Adapter Board and its Application Softwares for IrDA Communications (적외선 통신용 PC 어댑터와 응용 소프트웨어의 설계 및 구현)

  • 윤춘희;노선영;황민태
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.5
    • /
    • pp.889-895
    • /
    • 2003
  • In this paper, we develop a PC adapter board and application software that do not use mouse or keyboard but the infrared communication, which can control the operation remotely. The infrared communication adapter is made up of the infrared receiver part and the serial communication interface part. The infrared receiver part creates a suitable scan-code using the received signal from the infrared transmitter (remote-controller). The serial communication interface part transmits the scan-code to PC by a serial communication. We implement its application softwares to listen to music and see movies. We can control their operations such as play, stop, pause and volume control remotely.

  • PDF

Ultrasonic Backward Radiation on Randomly Rough Surface (무작위로 거친 표면에서의 후방복사 초음파)

  • Kwon, Sung-D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.1
    • /
    • pp.9-14
    • /
    • 2005
  • The angular dependence(profile) of backward radiated ultrasound was measured for glass specimens with random surface roughness using ultrasonic goniometer that ran changes the incident angle continuously. It was concluded that the roughened region had greater acoustic impedance than the unperturbed region. The comparison of backward radiations showed that the amplitude of peak and the area of radiation profile were increased with surface roughness. It was suggested from the sensitive dependence of the profile area that the profile of backward radiation could be applied to in the nondestructive evaluation of sulfate region. Inclined C-scan technique with the transducer inclined at Rayleigh angle showed the reverse of luminosity and the high signal to noise ratio so that it provided high resolution.

Adaptive Scanning Scheme for Mobile Broadband Wireless Networks based on the IEEE 802.16e Standard (802.16e 표준 기반 광대역 무선 이동 망을 위한 동적 스캐닝 기법)

  • Park, Jae-Sung;Lim, Yu-Jin
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.151-159
    • /
    • 2008
  • Mobile broadband wireless network is emerging as one of the hottest research areas due to technical advances, and the demands of users who wish to enjoy the same network experience on the move. In this paper, we investigate the handover process at the medium access control (MAC) layer in an IEEE 802.16e-based system. In particular, we identify problems concerned with the scan initiation Process called cell reselection and propose a received signal strength (RSS) estimation scheme to dynamically trigger a scanning process. We show how the RSS estimation scheme can timely initiate a scanning process by anticipating RSS values considering scan duration required.

  • PDF

Evaluation of Clinical Usefulness of Radio-Frequency Power Limitation in Brain MRI of Patients with Deep Brain Stimulation (뇌심부자극술 시술환자의 뇌 자기공명영상에서 고주파 출력의 제한기준에 대한 임상적 유용성 평가)

  • Yeon, Kyoo-Jin;Chang, Young-Ae;Lee, Seung-Keun;Lee, Tae-Soo
    • Journal of Radiation Industry
    • /
    • v.11 no.3
    • /
    • pp.139-144
    • /
    • 2017
  • To evaluation of clinical usefulness for B1+RMS limits, we compared image quality of Routine, Specific absorption rate (SAR) and Root mean square (RMS) protocol. 5 volunteers underwent Magnetic Resonance Imaging (MRI) scan of the brain using three different protocols. We draw Region of interest ROI in cortex, white matter, gray matter, putamen and thalamus of axial plan. Signal to noise ratio (SNR) were evaluated in each area and Contrast to noise ration (CNR) were evaluated between white matter and gray matter. Qualitative evaluation was used to score each ROI. B1+RMS is confirmed its usefulness compared to conventional SAR standard on the aspect of improvement of image quality, reduction of scan time and easy adjusting parameter.

High Speed SD-OCT System Using GPU Accelerated Mode for in vivo Human Eye Imaging

  • Cho, Nam Hyun;Jung, Unsang;Kim, Suhwan;Jung, Woonggyu;Oh, Junghwan;Kang, Hyun Wook;Kim, Jeehyun
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2013
  • We developed an SD-OCT (Spectral Domain-Optical Coherence Tomography) system which uses a GPU (Graphics Processing Unit) for processing. The image size from the SD-OCT system is $1024{\times}512$ and the speed is 110 frame/sec in real-time. K-domain linearization, FFT (Fast Fourier Transform), and log scaling were included in the GPU processing. The signal processing speed was about 62 ms using a CPU (Central Processing Unit) and 1.6 ms using a GPU, which is 39 times faster. We performed an in-vivo retinal scan, and reconstructed a 3D visualization based on C-scan images. As a result, there were minimal motion artifacts and we confirmed that tomograms of blood vessels, the optic nerve, and the optic disk are clearly identified. According to the results of this study, this SD-OCT can be applied to real-time 3D display technology, particularly auxiliary instruments for eye operations in ophthalmology.

A Study on Radiation Dose and Image Quality according to CT Table Height in Brain CT (두부 CT 검사 시 테이블 높이에 따른 선량과 화질에 관한 연구)

  • Ki-Won Kim;Joo-Young Oh;Jung-Whan Min;Sang-Sun Lee;Young-Bong Lee;Kyung-Hwan Lim;Yun Yi
    • Journal of radiological science and technology
    • /
    • v.46 no.2
    • /
    • pp.99-106
    • /
    • 2023
  • The height of the table should be considered important during computed tomography (CT) examination, but according to previous studies, not all radiology technologists set the table at the patient's center at the examination, which affects the exposure dose and image quality received by the patient. Therefore, this study intends to study the image quality exposure dose according to the height of the table to realize the optimal image quality and dose during the brain CT scan. The head phantom images were acquired using Philips Brilliance iCT 256. When the image was acquired, the table height was adjusted to 815, 865, 915, 965, 1015, and 1030 mm, respectively, and each scan was performed 3 times for each height. For the exposure dose measurement, optically stimulated luminescence dosimeter (OSLD) was attached to the front, side, eye, and thyroid gland of the head phantom. In the signal to noise ratio (SNR) measurement result, The SNR values for each table height were all lower than 915 mm. As a result of exposure dose, the exposure dose on each area increased as the table height decreased. The height of the table has a close relationship with the patient's radiation exposure dose in the CT scan.

The evaluation of useful on the additional PET/CT Liver scan (PET/CT 검사에서 Gastrointestinal Cancer 환자의 Liver 추가촬영에 대한 유용성 평가)

  • Park, Se Youn;Lee, Hwa Jin;Lee, Mu Seok;Kim, Jung Uk;Ji, Hye In
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.46-48
    • /
    • 2016
  • Purpose The liver one of the most common site for distant metastasis for a variety of tumor, especially of gastrointestinal origin. the purpose of this study was to analyze image quality between standard scan and additional liver scan. Materials and Methods From September 2015 to February 2016. 152 patients were examined undergo gastrointestinal cancer. 32 patients confirmed liver metastasis analyzed same liver ROI level and check the SNR, SUV and T/N ratio Results The $SNR_{mean}$ of standard was $17.7{\pm}10.3$; addition was $22.3{\pm}9.7$ (p<0.05). In $SUV_{max}$ of standard was $6.7{\pm}2.8$; addition was $7.6{\pm}3.2$ (P<0.05). and the T/N ratio of standard was $2.1{\pm}0.6$; addition was $2.5{\pm}0.8$ (P<0.05). Conclusion The $SNR_{mean}$, $SUV_{max}$ and T/N ratio were higher than those on the first scan (P<0.05). The SNRmean showed the highest change rate among the parameters. A additional liver scan is more favorable for the detection of gastrointestinal cancer patients.

  • PDF

Digital Processing and Acoustic Backscattering Characteristics on the Seafloor Image by Side Scan Sonar (Side Scan Sonar 탐사자료의 영상처리와 해저면 Backscattering 음향특성)

  • 김성렬;유홍룡
    • 한국해양학회지
    • /
    • v.22 no.3
    • /
    • pp.143-152
    • /
    • 1987
  • The digital data were obtained using Kennedy 9000 magnetic tape deck which was connected to the SMS960 side scan sonar during the field operations. The data of three consecutive survey tracks near Seongsan-po, Cheju were used for the development of this study. The softwares were mainly written in Fortran-77 using VAX 11/780 MINI-COMPUTER (CPU Memory; 4MB). The established mapping system consists of the pretreatment and the digital processing of seafloor image data. The pretreatment was necessary because the raw digital data format of the field magnetic tapes was not compatible to the VAX system. Therefore the raw data were read by the personal computer using the Assembler language and the data format was converted to IBM compatible, and next data were communicated to the VAX system. The digital processing includes geometrical correction for slant range, statistical analysis and cartography of the seafloor image. The sound speed in the water column was assumed 1,500 m/sec for the slant range correction and the moving average method was used for the signal trace smoothing. Histograms and cumulative curves were established for the statistical analysis, that was purposed to classify the backscattering strength from the sea-bottom. The seafloor image was displayed on the color screen of the TEKTRONIX 4113B terminal. According to the brief interpretation of the result image map, rocky and sedimentary bottoms were very well discriminated. Also it was shown that the backscattered acoustic pressurecorrelateswith the grain size and sorting of surface sediments.

  • PDF

Correction of Beam Direction Error caused by Frequency Scan Effect in Active Phased Array Antenna for Satellite Communications (위성통신 능동 위상배열 안테나에서 주파수 스캔 효과로 발생하는 빔 지향 오차의 보상)

  • 전순익;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.4
    • /
    • pp.413-420
    • /
    • 2003
  • In this paper, the correction method of antenna beam direction errors is introduced which caused by frequency scan effect in active Phased may antenna for satellite communications. The antenna makes the beam directional error from frequency scan effect when it has dual beam may structure with asymmetrical series connection, their frequencies are different and for from each other, their 3dB beamwidth is narrow, and scan range is wide. By proposed equations, estimated beam direction error angles can be calculated and active phase shifter control values also can be calculated to compensate them. In this paper, the active phased array antenna system was fabricated to measure beam direction errors both before and after correction, which has dual beam from 32${\times}$4 main level array and 4${\times}$2 second level array, frequency deviation 500 MHz max.(6.7 %) at 7.25 GHz∼7.75 GHz ranges, 0$^{\circ}$${\pm}$35$^{\circ}$nm ranges, and 35.6 dBi gain with 2.2$^{\circ}$3 dB beam width. Its beam direction error by frequency san effect which was 2.5$^{\circ}$max., was reduced to 0.2$^{\circ}$max. after correction. This was 7 dB improvement of signal loss. The active phased array antenna can accurately track the target satellite for communications by this proposed correction method.