• Title/Summary/Keyword: SIFT features

Search Result 115, Processing Time 0.032 seconds

A Study on Hierarchical Recognition Algorithm of Multinational Banknotes Using SIFT Features (SIFT특징치를 이용한 다국적 지폐의 계층적 인식 알고리즘에 관한 연구)

  • Lee, Wang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.685-692
    • /
    • 2016
  • In this paper, we not only take advantage of the SIFT features in banknote recognition, which has robustness to illumination changes, geometric rotation as well as scale changes, but also propose the hierarchical banknote recognition algorithm, which comprised of feature vector extraction from the frame grabbed image of the banknotes, and matching to the prepared data base of multinational banknotes by ANN algorithm. The images of banknote under the developed UV, IR and white illumination are used so as to extract the SIFT features peculiar to each banknotes. These SIFT features are used in recognition of the nationality as well as face value. We confirmed successful function of the proposed algorithm by applying the proposed algorithm to the banknotes of Korean and USD as well as EURO.

Arctic Sea Ice Motion Measurement Using Time-Series High-Resolution Optical Satellite Images and Feature Tracking Techniques (고해상도 시계열 광학 위성 영상과 특징점 추적 기법을 이용한 북극해 해빙 이동 탐지)

  • Hyun, Chang-Uk;Kim, Hyun-cheol
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_2
    • /
    • pp.1215-1227
    • /
    • 2018
  • Sea ice motion is an important factor for assessing change of sea ice because the motion affects to not only regional distribution of sea ice but also new ice growth and thickness of ice. This study presents an application of multi-temporal high-resolution optical satellites images obtained from Korea Multi-Purpose Satellite-2 (KOMPSAT-2) and Korea Multi-Purpose Satellite-3 (KOMPSAT-3) to measure sea ice motion using SIFT (Scale-Invariant Feature Transform), SURF (Speeded Up Robust Features) and ORB (Oriented FAST and Rotated BRIEF) feature tracking techniques. In order to use satellite images from two different sensors, spatial and radiometric resolution were adjusted during pre-processing steps, and then the feature tracking techniques were applied to the pre-processed images. The matched features extracted from the SIFT showed even distribution across whole image, however the matched features extracted from the SURF showed condensed distribution of features around boundary between ice and ocean, and this regionally biased distribution became more prominent in the matched features extracted from the ORB. The processing time of the feature tracking was decreased in order of SIFT, SURF and ORB techniques. Although number of the matched features from the ORB was decreased as 59.8% compared with the result from the SIFT, the processing time was decreased as 8.7% compared with the result from the SIFT, therefore the ORB technique is more suitable for fast measurement of sea ice motion.

Enhanced SIFT Descriptor Based on Modified Discrete Gaussian-Hermite Moment

  • Kang, Tae-Koo;Zhang, Huazhen;Kim, Dong W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.572-582
    • /
    • 2012
  • The discrete Gaussian-Hermite moment (DGHM) is a global feature representation method that can be applied to square images. We propose a modified DGHM (MDGHM) method and an MDGHM-based scale-invariant feature transform (MDGHM-SIFT) descriptor. In the MDGHM, we devise a movable mask to represent the local features of a non-square image. The complete set of non-square image features are then represented by the summation of all MDGHMs. We also propose to apply an accumulated MDGHM using multi-order derivatives to obtain distinguishable feature information in the third stage of the SIFT. Finally, we calculate an MDGHM-based magnitude and an MDGHM-based orientation using the accumulated MDGHM. We carry out experiments using the proposed method with six kinds of deformations. The results show that the proposed method can be applied to non-square images without any image truncation and that it significantly outperforms the matching accuracy of other SIFT algorithms.

Comparative Analysis of the Performance of SIFT and SURF (SIFT 와 SURF 알고리즘의 성능적 비교 분석)

  • Lee, Yong-Hwan;Park, Je-Ho;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.3
    • /
    • pp.59-64
    • /
    • 2013
  • Accurate and robust image registration is important task in many applications such as image retrieval and computer vision. To perform the image registration, essential required steps are needed in the process: feature detection, extraction, matching, and reconstruction of image. In the process of these function, feature extraction not only plays a key role, but also have a big effect on its performance. There are two representative algorithms for extracting image features, which are scale invariant feature transform (SIFT) and speeded up robust feature (SURF). In this paper, we present and evaluate two methods, focusing on comparative analysis of the performance. Experiments for accurate and robust feature detection are shown on various environments such like scale changes, rotation and affine transformation. Experimental trials revealed that SURF algorithm exhibited a significant result in both extracting feature points and matching time, compared to SIFT method.

A Study on the SIFT, SURF, and HOG Features of Image in the field of Surface Defect Inspection (표면결함검사에서 SIFT, SURF, HOG 영상의 특징에 관한 연구)

  • Jeon, Young-Min;Lee, In-Haeng;Bae, Keun-Bin;Ji, Hong-Geun;Bae, You-Seok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.403-406
    • /
    • 2019
  • 논문에서는 스마트 공장 시스템의 표면 결함 검사 시에 영상의 특징인 SIFT, SURF, HOG 특징들을 이용하여 표면 결함 검출에 활용하는 연구를 다루었습니다. 먼저 SIFT, SURF, HOG 특징에 대하여 소개하고 실험에서 이 특징들이 사용될 수 있음을 결과를 통해 보였습니다.

  • PDF

Robust AAM-based Face Tracking with Occlusion Using SIFT Features (SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적)

  • Eom, Sung-Eun;Jang, Jun-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.355-362
    • /
    • 2010
  • Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.

Video Based Face Spoofing Detection Using Fourier Transform and Dense-SIFT (푸리에 변환과 Dense-SIFT를 이용한 비디오 기반 Face Spoofing 검출)

  • Han, Hotaek;Park, Unsang
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.483-486
    • /
    • 2015
  • Security systems that use face recognition are vulnerable to spoofing attacks where unauthorized individuals use a photo or video of authorized users. In this work, we propose a method to detect a face spoofing attack with a video of an authorized person. The proposed method uses three sequential frames in the video to extract features by using Fourier Transform and Dense-SIFT filter. Then, classification is completed with a Support Vector Machine (SVM). Experimental results with a database of 200 valid and 200 spoof video clips showed 99% detection accuracy. The proposed method uses simplified features that require fewer memory and computational overhead while showing a high spoofing detection accuracy.

A Post-Verification Method of Near-Duplicate Image Detection using SIFT Descriptor Binarization (SIFT 기술자 이진화를 이용한 근-복사 이미지 검출 후-검증 방법)

  • Lee, Yu Jin;Nang, Jongho
    • Journal of KIISE
    • /
    • v.42 no.6
    • /
    • pp.699-706
    • /
    • 2015
  • In recent years, as near-duplicate image has been increasing explosively by the spread of Internet and image-editing technology that allows easy access to image contents, related research has been done briskly. However, BoF (Bag-of-Feature), the most frequently used method for near-duplicate image detection, can cause problems that distinguish the same features from different features or the different features from same features in the quantization process of approximating a high-level local features to low-level. Therefore, a post-verification method for BoF is required to overcome the limitation of vector quantization. In this paper, we proposed and analyzed the performance of a post-verification method for BoF, which converts SIFT (Scale Invariant Feature Transform) descriptors into 128 bits binary codes and compares binary distance regarding of a short ranked list by BoF using the codes. Through an experiment using 1500 original images, it was shown that the near-duplicate detection accuracy was improved by approximately 4% over the previous BoF method.

Correction of Rotated Region in Medical Images Using SIFT Features (SIFT 특징을 이용한 의료 영상의 회전 영역 보정)

  • Kim, Ji-Hong;Jang, Ick-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 2015
  • In this paper, a novel scheme for correcting rotated region in medical images using SIFT(Scale Invariant Feature Transform) algorithm is presented. Using the feature extraction function of SIFT, the rotation angle of rotated object in medical images is calculated as follows. First, keypoints of both reference and rotated medical images are extracted by SIFT. Second, the matching process is performed to the keypoints located at the predetermined ROI(Region Of Interest) at which objects are not cropped or added by rotating the image. Finally, degrees of matched keypoints are calculated and the rotation angle of the rotated object is determined by averaging the difference of the degrees. The simulation results show that the proposed scheme has excellent performance for correcting the rotated region in medical images.

Slab Region Localization for Text Extraction using SIFT Features (문자열 검출을 위한 슬라브 영역 추정)

  • Choi, Jong-Hyun;Choi, Sung-Hoo;Yun, Jong-Pil;Koo, Keun-Hwi;Kim, Sang-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1025-1034
    • /
    • 2009
  • In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.