• Title/Summary/Keyword: SIFT feature

Search Result 231, Processing Time 0.023 seconds

Multiple Object Tracking Using SIFT and Multi-Lateral Histogram (SIFT와 다중측면히스토그램을 이용한 다중물체추적)

  • Jun, Jung-Soo;Moon, Yong-Ho;Ha, Seok-Wun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.1
    • /
    • pp.53-59
    • /
    • 2014
  • In multiple object tracking, accurate detection for each of objects that appear sequentially and effective tracking in complicated cases that they are overlapped with each other are very important. In this paper, we propose a multiple object tracking system that has a concrete detection and tracking characteristics by using multi-lateral histogram and SIFT feature extraction algorithm. Especially, by limiting the matching area to object's inside and by utilizing the location informations in the keypoint matching process of SIFT algorithm, we advanced the tracking performance for multiple objects. Based on the experimental results, we found that the proposed tracking system has a robust tracking operation in the complicated environments that multiple objects are frequently overlapped in various of directions.

Novel Parallel Approach for SIFT Algorithm Implementation

  • Le, Tran Su;Lee, Jong-Soo
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.4
    • /
    • pp.298-306
    • /
    • 2013
  • The scale invariant feature transform (SIFT) is an effective algorithm used in object recognition, panorama stitching, and image matching. However, due to its complexity, real-time processing is difficult to achieve with current software approaches. The increasing availability of parallel computers makes parallelizing these tasks an attractive approach. This paper proposes a novel parallel approach for SIFT algorithm implementation using a block filtering technique in a Gaussian convolution process on the SIMD Pixel Processor. This implementation fully exposes the available parallelism of the SIFT algorithm process and exploits the processing and input/output capabilities of the processor, which results in a system that can perform real-time image and video compression. We apply this implementation to images and measure the effectiveness of such an approach. Experimental simulation results indicate that the proposed method is capable of real-time applications, and the result of our parallel approach is outstanding in terms of the processing performance.

FPGA based Implementation of FAST and BRIEF algorithm for Object Recognition (객체인식을 위한 FAST와 BRIEF 알고리즘 기반 FPGA 설계)

  • Heo, Hoon;Lee, Kwang-Yeob
    • Journal of IKEEE
    • /
    • v.17 no.2
    • /
    • pp.202-207
    • /
    • 2013
  • This paper implemented the conventional FAST and BRIEF algorithm as hardware on Zynq-7000 SoC Platform. Previous feature-based hardware accelerator is mostly implemented using the SIFT or SURF algorithm, but it requires excessive internal memory and hardware cost. The proposed FAST & BRIEF accelerator reduces approximately 57% of internal memory usage and 70% of hardware cost compared to the conventional SIFT or SURF accelerator, and it processes 0.17 pixel per Clock.

A Fast SIFT Implementation Based on Integer Gaussian and Reconfigurable Processor

  • Su, Le Tran;Lee, Jong Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.3
    • /
    • pp.39-52
    • /
    • 2009
  • Scale Invariant Feature Transform (SIFT) is an effective algorithm in object recognition, panorama stitching, and image matching, however, due to its complexity, real time processing is difficult to achieve with software approaches. This paper proposes using a reconfigurable hardware processor with integer half kernel. The integer half kernel Gaussian reduces the Gaussian pyramid complexity in about half [] and the reconfigurable processor carries out a parallel implementation of a full search Fast SIFT algorithm. We use a low memory, fine grain single instruction stream multiple data stream (SIMD) pixel processor that is currently being developed. This implementation fully exposes the available parallelism of the SIFT algorithm process and exploits the processing and I/O capabilities of the processor which results in a system that can perform real time image and video compression. We apply this novel implementation to images and measure the effectiveness. Experimental simulation results indicate that the proposed implementation is capable of real time applications.

  • PDF

Individual Identification Using Ear Region Based on SIFT (SIFT 기반의 귀 영역을 이용한 개인 식별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • In recent years, ear has emerged as a new biometric trait, because it has advantage of higher user acceptance than fingerprint and can be captured at remote distance in an indoor or outdoor environment. This paper proposes an individual identification method using ear region based on SIFT(shift invariant feature transform). Unlike most of the previous studies using rectangle shape for extracting a region of interest(ROI), this study sets an ROI as a flexible expanded region including ear. It also presents an effective extraction and matching method for SIFT keypoints. Experiments for evaluating the performance of the proposed method were performed on IITD public database. It showed correct identification rate of 98.89%, and it showed 98.44% with a deformed dataset of 20% occlusion. These results show that the proposed method is effective in ear recognition and robust to occlusion.

SIFT Image Feature Detect based on Deep learning (딥 러닝 기반의 SIFT 이미지 특징 검출)

  • Lee, Jae-Eun;Moon, Won-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2018.11a
    • /
    • pp.122-123
    • /
    • 2018
  • 본 논문에서는 옥타브(sacle vector, octave)를 0, 시그마(sigma)는 1.6, 간격(intervals)은 3으로 설정하여 검출한 RobHess SIFT 특징들로 데이터 셋을 만들어 딥 러닝 모델인 VGG-16을 기반으로 SIFT 이미지 특징을 검출하는 방법을 제안한다. DIV2K 데이터 셋을 $33{\times}33$ 크기로 잘라서 데이터 셋을 구성하였고, 흑백 영상으로 판별하는 SIFT와는 달리 RGB 영상을 사용 하였다. 영상을 좌 우 반전, 밝기, 회전, 크기를 조절하여 원본 영상을 변형시켜 네트워크 학습 및 평가를 진행하였다. 네트워크는 영상의 가운데에 위치한 픽셀이 특징점인지 아닌지를 판별한다. 검증 데이터의 결과 98.207%의 정확도를 얻었다.

  • PDF

Feature-based Image Analysis for Object Recognition on Satellite Photograph (인공위성 영상의 객체인식을 위한 영상 특징 분석)

  • Lee, Seok-Jun;Jung, Soon-Ki
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.2
    • /
    • pp.35-43
    • /
    • 2007
  • This paper presents a system for image matching and recognition based on image feature detection and description techniques from artificial satellite photographs. We propose some kind of parameters from the varied environmental elements happen by image handling process. The essential point of this experiment is analyzes that affects match rate and recognition accuracy when to change of state of each parameter. The proposed system is basically inspired by Lowe's SIFT(Scale-Invariant Transform Feature) algorithm. The descriptors extracted from local affine invariant regions are saved into database, which are defined by k-means performed on the 128-dimensional descriptor vectors on an artificial satellite photographs from Google earth. And then, a label is attached to each cluster of the feature database and acts as guidance for an appeared building's information in the scene from camera. This experiment shows the various parameters and compares the affected results by changing parameters for the process of image matching and recognition. Finally, the implementation and the experimental results for several requests are shown.

  • PDF

Object Surveillance and Unusual-behavior Judgment using Network Camera (네트워크 카메라를 이용한 물체 감시와 비정상행위 판단)

  • Kim, Jin-Kyu;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.125-129
    • /
    • 2012
  • In this paper, we propose an intelligent method to surveil moving objects and to judge an unusual-behavior by using network cameras. To surveil moving objects, the Scale Invariant Feature Transform (SIFT) algorithm is used to characterize the feature information of objects. To judge unusual-behaviors, the virtual human skeleton is used to extract the feature points of a human in input images. In this procedure, the Principal Component Analysis (PCA) improves the accuracy of the feature vector and the fuzzy classifier provides the judgement principle of unusual-behaviors. Finally, the experiment results show the effectiveness and the feasibility of the proposed method.

A Performance Analysis of the SIFT Matching on Simulated Geospatial Image Differences (공간 영상 처리를 위한 SIFT 매칭 기법의 성능 분석)

  • Oh, Jae-Hong;Lee, Hyo-Seong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.5
    • /
    • pp.449-457
    • /
    • 2011
  • As automated image processing techniques have been required in multi-temporal/multi-sensor geospatial image applications, use of automated but highly invariant image matching technique has been a critical ingredient. Note that there is high possibility of geometric and spectral differences between multi-temporal/multi-sensor geospatial images due to differences in sensor, acquisition geometry, season, and weather, etc. Among many image matching techniques, the SIFT (Scale Invariant Feature Transform) is a popular method since it has been recognized to be very robust to diverse imaging conditions. Therefore, the SIFT has high potential for the geospatial image processing. This paper presents a performance test results of the SIFT on geospatial imagery by simulating various image differences such as shear, scale, rotation, intensity, noise, and spectral differences. Since a geospatial image application often requires a number of good matching points over the images, the number of matching points was analyzed with its matching positional accuracy. The test results show that the SIFT is highly invariant but could not overcome significant image differences. In addition, it guarantees no outlier-free matching such that it is highly recommended to use outlier removal techniques such as RANSAC (RANdom SAmple Consensus).

A Study on Hierarchical Recognition Algorithm of Multinational Banknotes Using SIFT Features (SIFT특징치를 이용한 다국적 지폐의 계층적 인식 알고리즘에 관한 연구)

  • Lee, Wang-Heon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.7
    • /
    • pp.685-692
    • /
    • 2016
  • In this paper, we not only take advantage of the SIFT features in banknote recognition, which has robustness to illumination changes, geometric rotation as well as scale changes, but also propose the hierarchical banknote recognition algorithm, which comprised of feature vector extraction from the frame grabbed image of the banknotes, and matching to the prepared data base of multinational banknotes by ANN algorithm. The images of banknote under the developed UV, IR and white illumination are used so as to extract the SIFT features peculiar to each banknotes. These SIFT features are used in recognition of the nationality as well as face value. We confirmed successful function of the proposed algorithm by applying the proposed algorithm to the banknotes of Korean and USD as well as EURO.