• Title/Summary/Keyword: SIFT feature

Search Result 231, Processing Time 0.028 seconds

Automatic Registration of High Resolution Satellite Images using Local Properties of Tie Points (지역적 매칭쌍 특성에 기반한 고해상도영상의 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Choi, Jae-Wan;Han, Dong-Yeob;Kim, -Yong-Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.3
    • /
    • pp.353-359
    • /
    • 2010
  • In this paper, we propose the automatic image-to-image registration of high resolution satellite images using local properties of tie points to improve the registration accuracy. A spatial distance between interest points of reference and sensed images extracted by Scale Invariant Feature Transform(SIFT) is additionally used to extract tie points. Coefficients of affine transform between images are extracted by invariant descriptor based matching, and interest points of sensed image are transformed to the reference coordinate system using these coefficients. The spatial distance between interest points of sensed image which have been transformed to the reference coordinates and interest points of reference image is calculated for secondary matching. The piecewise linear function is applied to the matched tie points for automatic registration of high resolution images. The proposed method can extract spatially well-distributed tie points compared with SIFT based method.

Extended SURF Algorithm with Color Invariant Feature (컬러 불변 특징을 갖는 확장된 SURF 알고리즘)

  • Yoon, Hyun-Sup;Han, Young-Joon;Hahn, Hern-Soo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.193-196
    • /
    • 2009
  • 여러 개의 영상으로부터 스케일, 조명, 시점 등의 환경변화를 고려하여 대응점을 찾는 일은 쉽지 않다. SURF는 이러한 환경변화에 불변하는 특징점을 찾는 알고리즘중 하나로서 일반적으로 성능이 우수하다고 알려진 SIFT와 견줄만한 성능을 보이면서 속도를 크게 향상시킨 알고리즘이다. 하지만 SURF는 그레이공간 상의 정보만 이용함에 따라 컬러공간상에 주어진 많은 유용한 특징들을 활용하지 못한다. 본 논문에서는 강인한 컬러특정정보를 포함하는 확장된 SURF알고리즘을 제안한다. 제안하는 방법의 우수성은 다양한 조명환경과 시점변화에 따른 영상을 SIFT와 SURF 그리고 제안하는 컬러정보를 적용한 SURF알고리즘과 비교 실험을 통해 입증하였다.

  • PDF

Image Stabilization Scheme for Arbitrary Disturbance (임의의 외란에 대한 영상 안정화)

  • Kwak, Hwy-Kuen
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5750-5757
    • /
    • 2014
  • This paper proposes an image stabilization method for arbitrary disturbances, such as rotation, translation and zoom movement, using the SIFT (Scale Invariant Feature Transform). In addition, image stabilization was carried out using the image division and merge technique when moving objects appear on the scene. Finally, the experimental results showed that the suggested image stabilization scheme produced superior performance compared to the previous ones.

Location Change Estimation in a Video Stream based on SIFT Feature Distributions (SIFT 특성 분포를 이용한 비디오 스트림의 장소 변화 예측)

  • Yoo, Jun-Hee;Seok, Ho-Sik;Zhang, Byoung-Tak
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2011.06c
    • /
    • pp.295-298
    • /
    • 2011
  • 비디오 데이터의 지능적인 처리를 위해서는 사전에 작성한 메타데이터에 제한 받지 않는 유연한 접근방법이 필요하다. 본 논문에서는 엔트로피를 이용하여 적절한 특징을 추출한 후 비디오를 처리하는 방법을 소개한다. 이미지 인식이 잘 될 경우 일정한 이미지 조합으로 비디오의 배경을 설명할 수 있지만, 이미지 인식이 어렵기 때문에 동일한 배경일지라도 등장 인물의 움직임, 촬영 각도의 변화 등 사소한 변화가 발생하면 컴퓨터는 다른 이미지인 것으로 간주하게 된다. 우리가 제안하는 방법은 비디오를 구성하는 이미지 프레임에서 추출한 SIFT(Scale Invariant Feature Transform) 특성의 분포를 엔트로피에 기반하여 재구성한 후 분포 변화를 통해 장소 변화를 추정하는 방법이다. 제안 방법은 비디오 데이터의 이미지를 특징 짓는 비주얼 워드의 분포를 활용하기 때문에 사소한 변화 정도의 영향을 받지 않으면서 동시에 배경의 확연한 변화를 나타낼 수 있다. 우리는 실제 TV 드라마 데이터에 적용하여 제안 방법의 유용성을 확인하였다.

Object Recognition using SIFT and Tree Structure (SIFT와 트리구조를 이용한 내용기반 물체인식)

  • Joo, Jung-Kyoung;Lee, Hyun-Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2008.06a
    • /
    • pp.33-38
    • /
    • 2008
  • 최근 컴퓨터비전이나 로봇 공학 분야에서 가격이 저렴한 웹캠을 이용한 영상, 즉 2차원 영상으로부터 물체를 인식하는 연구가 활발히 이루어지고 있다. 이러한 로봇이나 비전에서 물체를 찾아내는 여러 가지 방향들이 제시되고 있으며, 지속적으로 로봇은 사람과 유사해져가고 있다. 이를 실현하기 위해서는 사람이 사과를 보고 사과라고 알기 때문에 사과라고 인식하듯이 로봇 또한 미리 알고 있어야 한다는 가정 하에 내용기반의 물체인식이 필요하다. 그러나 엄청난 양의 내용의 데이터베이스가 필요하다. 그래서 용량은 하드웨어기술로 커버가 가능하지만 화면상에 있는 물체들을 빠르게 데이터베이스상의 자료와 매칭이 되어야한다. 본 논문에서는 이미지를 SIFT(Scale Invariant Feature Transform)알고리즘으로 BTS(Binary Search Tree)로 트리구조의 데이터베이스를 구축하여 많은 양의 데이터베이스 중 빠르게 검색하여 화면에 있는 물체를 인식하는 방법을 제안하였다.

  • PDF

Feature Extraction for Off-line Handwritten Character Recognition using SIFT Descriptor (SIFT 서술자를 이용한 오프라인 필기체 문자 인식 특징 추출 기법)

  • Park, Jung-Guk;Kim, Kyung-Joong
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.496-500
    • /
    • 2010
  • 본 논문에서는 SIFT(Scale Invariant Feature Transform) 기술자를 이용하여 오프라인 필기체 문자 인식을 위한 특징 추출방법을 제안한다. 제안하는 방법은 문자의 획의 방향 정보를 제공하는 특징 벡터를 추출함으로써 오프라인 문자 인식에서 성능 향상을 기대할 수 있다. 테스트를 위해 MNIST 필기체 데이터베이스와 UJI Penchar2 필기체 데이터베이스를 이용하였고, BP(backpropagation)신경망과 LDA(Linear Discriminant Analysis), SVM(Support Vector Machine) 분류기에서 성능 테스트를 하였다. 본 논문의 실험결과에서는 일반적으로 사용되는 특징추출로부터 얻어진 특징에 제안된 특징추출을 정합하여 성능항샹을 보인다.

  • PDF

Deep Learning-based Scene Change Detection (딥 러닝을 이용한 화면 전환 검출)

  • Lee, Jae-eun;Seo, Young-Ho;Kim, Dong-wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.549-550
    • /
    • 2019
  • In this paper, we propose a method to detect the scene change using deep learning. To extract feature points, we use a deep neural network and express extracted feature points as 128 dimensional vectors using SIFT descriptor. If it is less than 25%, it is determined that the scene is changed.

  • PDF

3D Object Recognition Using Appearance Model of Feature Point (특징점 Appearance Model을 이용한 3차원 물체 인식)

  • Joo, Seong-Moon;Park, Jae-Wan;Lee, Chil-Woo
    • Annual Conference of KIPS
    • /
    • 2013.11a
    • /
    • pp.1536-1539
    • /
    • 2013
  • 3차원 물체는 카메라의 시선 방향에 따라 다른 영상을 생성하므로 2차원 영상만으로 3차원 물체를 인식하는 것은 쉬운 일이 아니다. 특히 영상생성 시 강한 perspective transformation 이 발생할 경우 2차원 국소 특징을 이용하는 SIFT(Scale-Invariant Feature Transform) 알고리즘은 매칭에 활용하기 어렵다. 본 논문에서는 3차원 물체를 하나의 특정 축 중심으로 회전시키면서 얻은 복수의 영상을 학습 데이터로 활용하여 SIFT 알고리즘을 개선한 물체인식 방법을 제안한다. 이 방법은 복수 영상의 특징점들을 하나의 특징 공간으로 합성하고 그 특징점들 간의 기하학적인 제약조건을 확인하여 3차원 물체를 인식하는 방법이다. 실험에서는 알고리즘의 유용성을 먼저 확인하기 위해 조명조건과 카메라의 위치를 일정하게 유지하였다. 이 방법에 의해 SIFT 알고리즘만으로 인식이 힘들었던 3차원 물체의 다양한 외관(appearance) 인식이 가능하게 되었다.

An Embedded Object Recognition System based on SIFT Algorithm (영상 특징점 추출 기반의 임베디드 객체인식 시스템)

  • Lee, Su-Hyun;Park, Chan-Ill;Gang, Cheol-Ho;Lee, Hyuk-Joon;Lee, Hyung-Keun;Jeong, Yong-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.102-103
    • /
    • 2008
  • 본 논문에서는 임베디드 환경을 위한 객체인식 시스템의 구조 및 실시간 처리를 위한 객체인식기의 하드웨어설계를 제안한다. 제안된 구조는 SIFT(Scale Invariant Feature Transform)를 이용하여 사물의 특징점을 추출하고, 비교하여 객체를 인식한다. SIFT는 영상의 크기 및 회전 등의 변화에 적응이 뛰어난 알고리즘이지만, 복잡한 연산이 반복되어 연산시간이 많은 특성상 임베디드 환경에서 실시간 처리가 어렵다. 따라서 해당 알고리즘을 하프웨어로 설계하여, 임베디드 사물인식 시스템에 적용한다. 사물인식의 빠른 처리와 인식영역의 구분을 위해 JSEG 영상분할 알고리즘을 활용하며, SIFT 특징점 추출 연산과 병렬 실행이 가능하도록 SIFT와 함께 하드웨어 구조로 설계한다.

  • PDF

Localization and Autonomous Navigation Using GPU-based SIFT and Virtual Force for Mobile Robots (GPU 기반 SIFT 방법과 가상의 힘을 이용한 이동 로봇의 위치 인식 및 자율 주행 제어)

  • Tak, Myung Hwan;Joo, Young Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1738-1745
    • /
    • 2016
  • In this paper, we present localization and autonomous navigation method using GPU(Graphics Processing Unit)-based SIFT(Scale-Invariant Feature Transform) algorithm and virtual force method for mobile robots. To do this, at first, we propose the localization method to recognize the landmark using the GPU-based SIFT algorithm and to update the position using extended Kalman filter. And then, we propose the A-star algorithm for path planning and the virtual force method for autonomous navigation of the mobile robot. Finally, we demonstrate the effectiveness and applicability of the proposed method through some experiments using the mobile robot with OPRoS(Open Platform for Robotic Services).