• Title/Summary/Keyword: SIFT feature

Search Result 231, Processing Time 0.033 seconds

Performance Comparison and Analysis between Keypoints Extraction Algorithms using Drone Images (드론 영상을 이용한 특징점 추출 알고리즘 간의 성능 비교)

  • Lee, Chung Ho;Kim, Eui Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.2
    • /
    • pp.79-89
    • /
    • 2022
  • Images taken using drones have been applied to fields that require rapid decision-making as they can quickly construct high-quality 3D spatial information for small regions. To construct spatial information based on drone images, it is necessary to determine the relationship between images by extracting keypoints between adjacent drone images and performing image matching. Therefore, in this study, three study regions photographed using a drone were selected: a region where parking lots and a lake coexisted, a downtown region with buildings, and a field region of natural terrain, and the performance of AKAZE (Accelerated-KAZE), BRISK (Binary Robust Invariant Scalable Keypoints), KAZE, ORB (Oriented FAST and Rotated BRIEF), SIFT (Scale Invariant Feature Transform), and SURF (Speeded Up Robust Features) algorithms were analyzed. The performance of the keypoints extraction algorithms was compared with the distribution of extracted keypoints, distribution of matched points, processing time, and matching accuracy. In the region where the parking lot and lake coexist, the processing speed of the BRISK algorithm was fast, and the SURF algorithm showed excellent performance in the distribution of keypoints and matched points and matching accuracy. In the downtown region with buildings, the processing speed of the AKAZE algorithm was fast and the SURF algorithm showed excellent performance in the distribution of keypoints and matched points and matching accuracy. In the field region of natural terrain, the keypoints and matched points of the SURF algorithm were evenly distributed throughout the image taken by drone, but the AKAZE algorithm showed the highest matching accuracy and processing speed.

Image Classification Approach for Improving CBIR System Performance (콘텐트 기반의 이미지검색을 위한 분류기 접근방법)

  • Han, Woo-Jin;Sohn, Kyung-Ah
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.7
    • /
    • pp.816-822
    • /
    • 2016
  • Content-Based image retrieval is a method to search by image features such as local color, texture, and other image content information, which is different from conventional tag or labeled text-based searching. In real life data, the number of images having tags or labels is relatively small, so it is hard to search the relevant images with text-based approach. Existing image search method only based on image feature similarity has limited performance and does not ensure that the results are what the user expected. In this study, we propose and validate a machine learning based approach to improve the performance of the image search engine. We note that when users search relevant images with a query image, they would expect the retrieved images belong to the same category as that of the query. Image classification method is combined with the traditional image feature similarity method. The proposed method is extensively validated on a public PASCAL VOC dataset consisting of 11,530 images from 20 categories.

Quality Assessment of Images Projected Using Multiple Projectors

  • Kakli, Muhammad Umer;Qureshi, Hassaan Saadat;Khan, Muhammad Murtaza;Hafiz, Rehan;Cho, Yongju;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.6
    • /
    • pp.2230-2250
    • /
    • 2015
  • Multiple projectors with partially overlapping regions can be used to project a seamless image on a large projection surface. With the advent of high-resolution photography, such systems are gaining popularity. Experts set up such projection systems by subjectively identifying the types of errors induced by the system in the projected images and rectifying them by optimizing (correcting) the parameters associated with the system. This requires substantial time and effort, thus making it difficult to set up such systems. Moreover, comparing the performance of different multi-projector display (MPD) systems becomes difficult because of the subjective nature of evaluation. In this work, we present a framework to quantitatively determine the quality of an MPD system and any image projected using such a system. We have divided the quality assessment into geometric and photometric qualities. For geometric quality assessment, we use Feature Similarity Index (FSIM) and distance-based Scale Invariant Feature Transform (SIFT). For photometric quality assessment, we propose to use a measure incorporating Spectral Angle Mapper (SAM), Intensity Magnitude Ratio (IMR) and Perceptual Color Difference (ΔE). We have tested the proposed framework and demonstrated that it provides an acceptable method for both quantitative evaluation of MPD systems and estimation of the perceptual quality of any image projected by them.

Image Retrieval Method Based on IPDSH and SRIP

  • Zhang, Xu;Guo, Baolong;Yan, Yunyi;Sun, Wei;Yi, Meng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.5
    • /
    • pp.1676-1689
    • /
    • 2014
  • At present, the Content-Based Image Retrieval (CBIR) system has become a hot research topic in the computer vision field. In the CBIR system, the accurate extractions of low-level features can reduce the gaps between high-level semantics and improve retrieval precision. This paper puts forward a new retrieval method aiming at the problems of high computational complexities and low precision of global feature extraction algorithms. The establishment of the new retrieval method is on the basis of the SIFT and Harris (APISH) algorithm, and the salient region of interest points (SRIP) algorithm to satisfy users' interests in the specific targets of images. In the first place, by using the IPDSH and SRIP algorithms, we tested stable interest points and found salient regions. The interest points in the salient region were named as salient interest points. Secondary, we extracted the pseudo-Zernike moments of the salient interest points' neighborhood as the feature vectors. Finally, we calculated the similarities between query and database images. Finally, We conducted this experiment based on the Caltech-101 database. By studying the experiment, the results have shown that this new retrieval method can decrease the interference of unstable interest points in the regions of non-interests and improve the ratios of accuracy and recall.

Nearest-Neighbors Based Weighted Method for the BOVW Applied to Image Classification

  • Xu, Mengxi;Sun, Quansen;Lu, Yingshu;Shen, Chenming
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1877-1885
    • /
    • 2015
  • This paper presents a new Nearest-Neighbors based weighted representation for images and weighted K-Nearest-Neighbors (WKNN) classifier to improve the precision of image classification using the Bag of Visual Words (BOVW) based models. Scale-invariant feature transform (SIFT) features are firstly extracted from images. Then, the K-means++ algorithm is adopted in place of the conventional K-means algorithm to generate a more effective visual dictionary. Furthermore, the histogram of visual words becomes more expressive by utilizing the proposed weighted vector quantization (WVQ). Finally, WKNN classifier is applied to enhance the properties of the classification task between images in which similar levels of background noise are present. Average precision and absolute change degree are calculated to assess the classification performance and the stability of K-means++ algorithm, respectively. Experimental results on three diverse datasets: Caltech-101, Caltech-256 and PASCAL VOC 2011 show that the proposed WVQ method and WKNN method further improve the performance of classification.

A New Method for Measurement and Prediction of Memorability from Logo Images using Characteristics of Color and Shape (색상 및 형태 특성을 이용한 로고 영상의 기억용이성 측정 및 예측)

  • Oh, Sang-Il;Kang, Hang-Bong
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1509-1518
    • /
    • 2015
  • Because a logo is a medium that connects between consumers and corporations or brands, designing memorable logo images is vital. Although predicting logo's memorability for brand marketing is essential, there have been only few researches that deal with memorability of logo images. In this paper, we analyze the memorability characteristics in logo images by performing experiments based upon our proposed prediction method for logo image's memorability. Our proposed research consists of three phases: crowdsourcing for memorability computing, computational phase for logo image's memorability, and development of a prediction model. Using computed memorability of logo images by "Visual Memory Game," we analyze the different characteristics of logo's memorability. We first developed a novel computational method that reflects logo image's color and shape. Each computational method on color and shape are selected by comparing the correlations between result values and ground truth memorability. Selected computational value is then converged with generic image feature descriptors such as SIFT and HoG to make a prediction model of logo's memorability. Using our method, we obtain reasonable performances in predicting logo image's memorability.

FAST and BRIEF based Real-Time Feature Matching Algorithms (FAST와 BRIEF 기반의 실시간 특징점 매칭 알고리즘)

  • Kim, Seungryong;Yoo, Hunjae;Sohn, Kwanghoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2012.11a
    • /
    • pp.1-4
    • /
    • 2012
  • 영상 매칭 기술은 컴퓨터 비전 분야에서 다양하게 응용될 수 있는 기초적인 기술 중에 하나이다. 대표적인 영상 매칭 기술인 SIFT나 SURF는 강인한 영상 매칭 성능을 나타내지만 계산량이 방대하여 실시간 기술에 사용될 수 없는 문제점을 가진다. 최근에 ORB나 BRISK는 FAST 특징점 검출기와 BRIEF 특징점 표현자를 조합하여 실시간 영상 매칭을 가능하게 하면서 기존의 영상 매칭 기술과 견줄만한 성능을 나타내었다. 본 논문에서는 FAST와 BRIEF를 수정하여 영상 왜곡에 강인하면서 실시간으로 매칭을 수행할 수 있는 영상 매칭 알고리즘을 제안한다. 노이즈에 강인하면서 스케일 변화를 고려하기 위하여 특징점 후보 영역을 제한하고 스케일 공간을 생성하여 특징점을 검출한다. 또한 영상의 회전 변화에 강인한 영상 매칭을 가능하게 하기 위하여 주변 픽셀 패턴의 Gradient로 특징점 방향을 결정하여 픽셀 밝기 값 비교로 이진 특징점 표현자를 생성한다. 제안하는 영상 매칭 알고리즘은 적은 계산량으로 기존의 알고리즘보다 우수한 영상 매칭 성능을 나타낸다. 특별히 노이즈가 존재하는 영상의 매칭에서 노이즈의 영향에 강인한 매칭 성능을 보여준다.

  • PDF

Fast algorithm for Traffic Sign Recognition (고속 교통표시판 인식 알고리즘)

  • Dajun, Ding;Lee, Chanho
    • Journal of IKEEE
    • /
    • v.16 no.4
    • /
    • pp.356-363
    • /
    • 2012
  • Information technology improves convenience, safety, and performance of automobiles. Recently, a lot of algorithms are studied to provide safety and environment information for driving, and traffic sign recognition is one of them. It can provide important information for safety driving. In this paper, we propose a method for traffic sign detection and identification concentrating on reducing the computation time. First, potential traffic signs are segmented by color threshold, and a polygon approximation algorithm is used to detect appropriate polygons. The potential signs are compared with the template signs in the database using SURF and ORB feature matching method.

A Practical Solution toward SLAM in Indoor environment Based on Visual Objects and Robust Sonar Features (가정환경을 위한 실용적인 SLAM 기법 개발 : 비전 센서와 초음파 센서의 통합)

  • Ahn, Sung-Hwan;Choi, Jin-Woo;Choi, Min-Yong;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.25-35
    • /
    • 2006
  • Improving practicality of SLAM requires various sensors to be fused effectively in order to cope with uncertainty induced from both environment and sensors. In this case, combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes, extracting robust point and line features from sonar data and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. And fusing sonar features and visual objects through EKF-SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in indoor environment. The performance of the proposed algorithm was verified by experiments in home -like environment.

  • PDF

A Cross-Platform Malware Variant Classification based on Image Representation

  • Naeem, Hamad;Guo, Bing;Ullah, Farhan;Naeem, Muhammad Rashid
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3756-3777
    • /
    • 2019
  • Recent internet development is helping malware researchers to generate malicious code variants through automated tools. Due to this reason, the number of malicious variants is increasing day by day. Consequently, the performance improvement in malware analysis is the critical requirement to stop the rapid expansion of malware. The existing research proved that the similarities among malware variants could be used for detection and family classification. In this paper, a Cross-Platform Malware Variant Classification System (CP-MVCS) proposed that converted malware binary into a grayscale image. Further, malicious features extracted from the grayscale image through Combined SIFT-GIST Malware (CSGM) description. Later, these features used to identify the relevant family of malware variant. CP-MVCS reduced computational time and improved classification accuracy by using CSGM feature description along machine learning classification. The experiment performed on four publically available datasets of Windows OS and Android OS. The experimental results showed that the computation time and malware classification accuracy of CP-MVCS was higher than traditional methods. The evaluation also showed that CP-MVCS was not only differentiated families of malware variants but also identified both malware and benign samples in mix fashion efficiently.