• Title/Summary/Keyword: SIFT feature

Search Result 231, Processing Time 0.028 seconds

Study on the panorama image processing using the SURF feature detector and technicians. (SURF 특징 검출기와 기술자를 이용한 파노라마 이미지 처리에 관한 연구)

  • Kim, Nam-woo;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.699-702
    • /
    • 2015
  • 다중의 영상을 이용하여 하나의 파노라마 영상을 제작하는 기법은 컴퓨터 비전, 컴퓨터 그래픽스 등과 같은 여러 분야에서 널리 연구되고 있다. 파노라마 영상은 하나의 카메라에서 얻을 수 있는 영상의 한계, 즉 예를 들어 화각, 화질, 정보량 등의 한계를 극복할 수 있는 좋은 방법으로서 가상현실, 로봇비전 등과 같이 광각의 영상이 요구되는 다양한 분야에서 응용될 수 있다. 파노라마 영상은 단일 영상과 비교하여 보다 큰 몰입감을 제공한다는 점에서 큰 의미를 갖는다. 현재 다양한 파노라마 영상 제작 기법들이 존재하지만, 대부분의 기법들이 공통적으로 파노라마 영상을 구성할 때 각 영상에 존재하는 특징점 및 대응점을 검출하는 방식을 사용하고 있다. 본 논문에서 사용한 SURF(Speeded Up Robust Features) 알고리즘은 영상의 특징점을 검출할 때 영상의 흑백정보와 지역 공간 정보를 활용하는데, 영상의 크기 변화와 시점 검출에 강하며 SIFT(Scale Invariant Features Transform) 알고리즘에 비해 속도가 빠르다는 장점이 있어서 널리 사용되고 있다. 본 논문에서는 두 영상 사이 또는 하나의 영상과 여러 영상 사이에 대응되는 매칭을 계산하여 파노라마영상을 생성하는 처리 방법을 구현하고 기술하였다.

  • PDF

Mean-Shift Blob Clustering and Tracking for Traffic Monitoring System

  • Choi, Jae-Young;Yang, Young-Kyu
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.235-243
    • /
    • 2008
  • Object tracking is a common vision task to detect and trace objects between consecutive frames. It is also important for a variety of applications such as surveillance, video based traffic monitoring system, and so on. An efficient moving vehicle clustering and tracking algorithm suitable for traffic monitoring system is proposed in this paper. First, automatic background extraction method is used to get a reliable background as a reference. The moving blob(object) is then separated from the background by mean shift method. Second, the scale invariant feature based method extracts the salient features from the clustered foreground blob. It is robust to change the illumination, scale, and affine shape. The simulation results on various road situations demonstrate good performance achieved by proposed method.

Design and Implementation Stereo Camera based Twin Camera Module System (스테레오 카메라 기반 트윈 카메라 모듈 시스템 설계 및 구현)

  • Kim, Tae-Yeun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.6
    • /
    • pp.537-546
    • /
    • 2019
  • The paper actualizes the twin camera module system that is portable and very useful for the production of 3D contents. The suggested twin camera module system is a system to be able to display the 3D image after converting the inputted image from 2D stereo camera. To evaluate the performance of the twin camera module suggested in this paper, I assessed the correction of Rotation and Tilt created depending on the visual difference between the left and right stereoscopic image shot by the left and right lenses by using the Test Platform. In addition, I verified the efficiency of the twin camera module system through verifying Depth Error of 3D stereoscopic image by means of Scale Invariant Feature Transform(SIFT) algorithm. I think that if the user utilizes the suggested twin camera module system in displaying the image to the external after converting the shot image into the 3D stereoscopic image and the preparation image, it is possible to display the image in a matched way with an output device fit respectively for different 3D image production methods and if the user utilizes the system in displaying the created image in the form of the 3D stereoscopic image and the preparation image via different channels, it is possible to produce 3D image contents easily and conveniently with applying to lots of products.

A Study on the Improvement of Geometric Quality of KOMPSAT-3/3A Imagery Using Planetscope Imagery (Planetscope 영상을 이용한 KOMPSAT-3/3A 영상의 기하품질 향상 방안 연구)

  • Jung, Minyoung;Kang, Wonbin;Song, Ahram;Kim, Yongil
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.327-343
    • /
    • 2020
  • This study proposes a method to improve the geometric quality of KOMPSAT (Korea Multi-Purpose Satellite)-3/3A Level 1R imagery, particularly for efficient disaster damage analysis. The proposed method applies a novel grid-based SIFT (Scale Invariant Feature Transform) method to the Planetscope ortho-imagery, which solves the inherent limitations in acquiring appropriate optical satellite imagery over disaster areas, and the KOMPSAT-3/3A imagery to extract GCPs (Ground Control Points) required for the RPC (Rational Polynomial Coefficient) bias compensation. In order to validate its effectiveness, the proposed method was applied to the KOMPSAT-3 multispectral image of Gangnueng which includes the April 2019 wildfire, and the KOMPSAT-3A image of Daejeon, which was additionally selected in consideration of the diverse land cover types. The proposed method improved the geometric quality of KOMPSAT-3/3A images by reducing the positioning errors(RMSE: Root Mean Square Error) of the two images from 6.62 pixels to 1.25 pixels for KOMPSAT-3, and from 7.03 pixels to 1.66 pixels for KOMPSAT-3A. Through a visual comparison of the post-disaster KOMPSAT-3 ortho-image of Gangneung and the pre-disaster Planetscope ortho-image, the result showed appropriate geometric quality for wildfire damage analysis. This paper demonstrated the possibility of using Planetscope ortho-images as an alternative to obtain the GCPs for geometric calibration. Furthermore, the proposed method can be applied to various KOMPSAT-3/3A research studies where Planetscope ortho-images can be provided.

Comparison of Multi-angle TerraSAR-X Staring Mode Image Registration Method through Coarse to Fine Step (Coarse to Fine 단계를 통한 TerraSAR-X Staring Mode 다중 관측각 영상 정합기법 비교 분석)

  • Lee, Dongjun;Kim, Sang-Wan
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.475-491
    • /
    • 2021
  • With the recent increase in available high-resolution (< ~1 m) satellite SAR images, the demand for precise registration of SAR images is increasing in various fields including change detection. The registration between high-resolution SAR images acquired in different look angle is difficult due to speckle noise and geometric distortion caused by the characteristics of SAR images. In this study, registration is performed in two stages, coarse and fine, using the x-band SAR data imaged at staring spotlight mode of TerraSAR-X. For the coarse registration, a method combining the adaptive sampling method and SAR-SIFT (Scale Invariant Feature Transform) is applied, and three rigid methods (NCC: Normalized Cross Correlation, Phase Congruency-NCC, MI: Mutual Information) and one non-rigid (Gefolki: Geoscience extended Flow Optical Flow Lucas-Kanade Iterative), for the fine registration stage, was performed for performance comparison. The results were compared by using RMSE (Root Mean Square Error) and FSIM (Feature Similarity) index, and all rigid models showed poor results in all image combinations. It is confirmed that the rigid models have a large registration error in the rugged terrain area. As a result of applying the Gefolki algorithm, it was confirmed that the RMSE of Gefolki showed the best result as a 1~3 pixels, and the FSIM index also obtained a higher value than 0.02~0.03 compared to other rigid methods. It was confirmed that the mis-registration due to terrain effect could be sufficiently reduced by the Gefolki algorithm.

Experiment on Low Light Image Enhancement and Feature Extraction Methods for Rover Exploration in Lunar Permanently Shadowed Region (달 영구음영지역에서 로버 탐사를 위한 저조도 영상강화 및 영상 특징점 추출 성능 실험)

  • Park, Jae-Min;Hong, Sungchul;Shin, Hyu-Soung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.5
    • /
    • pp.741-749
    • /
    • 2022
  • Major space agencies are planning for the rover-based lunar exploration since water-ice was detected in permanently shadowed regions (PSR). Although sunlight does not directly reach the PSRs, it is expected that reflected sunlight sustains a certain level of low-light environment. In this research, the indoor testbed was made to simulate the PSR's lighting and topological conditions, to which low light enhancement methods (CLAHE, Dehaze, RetinexNet, GLADNet) were applied to restore image brightness and color as well as to investigate their influences on the performance of feature extraction and matching methods (SIFT, SURF, ORB, AKAZE). The experiment results show that GLADNet and Dehaze images in order significantly improve image brightness and color. However, the performance of the feature extraction and matching methods were improved by Dehaze and GLADNet images in order, especially for ORB and AKAZE. Thus, in the lunar exploration, Dehaze is appropriate for building 3D topographic map whereas GLADNet is adequate for geological investigation.

Improved Similarity Detection Algorithm of the Video Scene (개선된 비디오 장면 유사도 검출 알고리즘)

  • Yu, Ju-Won;Kim, Jong-Weon;Choi, Jong-Uk;Bae, Kyoung-Yul
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.43-50
    • /
    • 2009
  • We proposed similarity detection method of the video frame data that extracts the feature data of own video frame and creates the 1-D signal in this paper. We get the similar frame boundary and make the representative frames within the frame boundary to extract the similarity extraction between video. Representative frames make blurring frames and extract the feature data using DOG values. Finally, we convert the feature data into the 1-D signal and compare the contents similarity. The experimental results show that the proposed algorithm get over 0.9 similarity value against noise addition, rotation change, size change, frame delete, frame cutting.

Hardware Accelerated Design on Bag of Words Classification Algorithm

  • Lee, Chang-yong;Lee, Ji-yong;Lee, Yong-hwan
    • Journal of Platform Technology
    • /
    • v.6 no.4
    • /
    • pp.26-33
    • /
    • 2018
  • In this paper, we propose an image retrieval algorithm for real-time processing and design it as hardware. The proposed method is based on the classification of BoWs(Bag of Words) algorithm and proposes an image search algorithm using bit stream. K-fold cross validation is used for the verification of the algorithm. Data is classified into seven classes, each class has seven images and a total of 49 images are tested. The test has two kinds of accuracy measurement and speed measurement. The accuracy of the image classification was 86.2% for the BoWs algorithm and 83.7% the proposed hardware-accelerated software implementation algorithm, and the BoWs algorithm was 2.5% higher. The image retrieval processing speed of BoWs is 7.89s and our algorithm is 1.55s. Our algorithm is 5.09 times faster than BoWs algorithm. The algorithm is largely divided into software and hardware parts. In the software structure, C-language is used. The Scale Invariant Feature Transform algorithm is used to extract feature points that are invariant to size and rotation from the image. Bit streams are generated from the extracted feature point. In the hardware architecture, the proposed image retrieval algorithm is written in Verilog HDL and designed and verified by FPGA and Design Compiler. The generated bit streams are stored, the clustering step is performed, and a searcher image databases or an input image databases are generated and matched. Using the proposed algorithm, we can improve convenience and satisfaction of the user in terms of speed if we search using database matching method which represents each object.

Evaluation on Tie Point Extraction Methods of WorldView-2 Stereo Images to Analyze Height Information of Buildings (건물의 높이 정보 분석을 위한 WorldView-2 스테레오 영상의 정합점 추출방법 평가)

  • Yeji, Kim;Yongil, Kim
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.407-414
    • /
    • 2015
  • Interest points are generally located at the pixels where height changes occur. So, interest points can be the significant pixels for DSM generation, and these have the important role to generate accurate and reliable matching results. Manual operation is widely used to extract the interest points and to match stereo satellite images using these for generating height information, but it causes economic and time consuming problems. Thus, a tie point extraction method using Harris-affine technique and SIFT(Scale Invariant Feature Transform) descriptors was suggested to analyze height information of buildings in this study. Interest points on buildings were extracted by Harris-affine technique, and tie points were collected efficiently by SIFT descriptors, which is invariant for scale. Searching window for each interest points was used, and direction of tie points pairs were considered for more efficient tie point extraction method. Tie point pairs estimated by proposed method was used to analyze height information of buildings. The result had RMSE values less than 2m comparing to the height information estimated by manual method.

A Hybrid Feature Selection Method using Univariate Analysis and LVF Algorithm (단변량 분석과 LVF 알고리즘을 결합한 하이브리드 속성선정 방법)

  • Lee, Jae-Sik;Jeong, Mi-Kyoung
    • Journal of Intelligence and Information Systems
    • /
    • v.14 no.4
    • /
    • pp.179-200
    • /
    • 2008
  • We develop a feature selection method that can improve both the efficiency and the effectiveness of classification technique. In this research, we employ case-based reasoning as a classification technique. Basically, this research integrates the two existing feature selection methods, i.e., the univariate analysis and the LVF algorithm. First, we sift some predictive features from the whole set of features using the univariate analysis. Then, we generate all possible subsets of features from these predictive features and measure the inconsistency rate of each subset using the LVF algorithm. Finally, the subset having the lowest inconsistency rate is selected as the best subset of features. We measure the performances of our feature selection method using the data obtained from UCI Machine Learning Repository, and compare them with those of existing methods. The number of selected features and the accuracy of our feature selection method are so satisfactory that the improvements both in efficiency and effectiveness are achieved.

  • PDF