• Title/Summary/Keyword: SIFT feature

Search Result 231, Processing Time 0.028 seconds

Plant leaf Classification Using Orientation Feature Descriptions (방향성 특징 기술자를 이용한 식물 잎 인식)

  • Gang, Su Myung;Yoon, Sang Min;Lee, Joon Jae
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.3
    • /
    • pp.300-311
    • /
    • 2014
  • According to fast change of the environment, the structured study of the ecosystem by analyzing the plant leaves are needed. Expecially, the methodology that searches and classifies the leaves from captured from the smart device have received numerous concerns in the field of computer science and ecology. In this paper, we propose a plant leaf classification technique using shape descriptor by combining Scale Invarinat Feature Transform (SIFT) and Histogram of Oriented Gradient (HOG) from the image segmented from the background via Graphcut algorithm. The shape descriptor is coded in the field of Locality-constrained Linear Coding to optimize the meaningful features from a high degree of freedom. It is connected to Support Vector Machines (SVM) for efficient classification. The experimental results show that our proposed approach is very efficient to classify the leaves which have similar color, and shape.

A Study on Automatic Coregistration and Band Selection of Hyperion Hyperspectral Images for Change Detection (변화탐지를 위한 Hyperion 초분광 영상의 자동 기하보정과 밴드선택에 관한 연구)

  • Kim, Dae-Sung;Kim, Yong-Il;Eo, Yang-Dam
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.5
    • /
    • pp.383-392
    • /
    • 2007
  • This study focuses on co-registration and band selection, which are one of the pre-processing steps to apply the change detection technique using hyperspectral images. We carried out automatic co-registration by using the SIFT algorithm which performance was already established in the computer vision fields, and selected the bands fur change detection by estimating the noise of image through the PIFs reflecting the radiometric consistency. The EM algorithm was also applied to select the band objectively. Hyperion images were used for the proposed techniques, and non-calibrated bands and striping noises contained in Hyperion image were removed. Throughout the results, we could develop the reliable co-registration procedure which coincided with accuracy within 0.2 pixels (RMSE) for change detection, and verified that band selection depending on the visual inspection could be objective by extracting the PIFs.

Image Identifier based on Local Feature's Histogram and Acceleration Technique using GPU (지역 특징 히스토그램 기반 영상식별자와 GPU 가속화)

  • Jeon, Hyeok-June;Seo, Yong-Seok;Hwang, Chi-Jung
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.9
    • /
    • pp.889-897
    • /
    • 2010
  • Recently, a cutting-edge large-scale image database system has demanded these attributes: search with alarming speed, performs with high accuracy, archives efficiently and much more. An image identifier (descriptor) is for measuring the similarity of two images which plays an important role in this system. The extraction method of an image identifier can be roughly classified into two methods: a local and global method. In this paper, the proposed image identifier, LFH(Local Feature's Histogram), is obtained by a histogram of robust and distinctive local descriptors (features) constrained by a district sub-division of a local region. Furthermore, LFH has not only the properties of a local and global descriptor, but also can perform calculations at a magnificent clip to determine distance with pinpoint accuracy. Additionally, we suggested a way to extract LFH via GPU (OpenGL and GLSL). In this experiment, we have compared the LFH with SIFT (local method) and EHD (global method) via storage capacity, extraction and retrieval time along with accuracy.

An X-ray Image Panorama System Using Robust Feature Matching and Per ception-Based Image Enhancement

  • Wang, Weiwei;Gwun, Oubong
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.569-576
    • /
    • 2012
  • This paper presents an x-ray medical image panorama system which can overcome the smallness of the images that exist on a source computer during remote medical processing. In the system, after the standard medical image format DICOM is converted to the PC standard image format, a MSR algorithm is used to enhance X-ray images of low quality. Then SURF and Multi-band blending are applied to generate a panoramic image. Also, this paper evaluates the proposed SURF based system through the average gray value error and image quality criterion with X-ray image data by comparing with a SIFT based system. The results show that the proposed system is superior to SIFT based system in image quality.

A Study on Scale-Invariant Features Extraction and Distance Measurement for Localization of Mobile Robot (이동로봇의 위치 추정을 위한 스케일 불변 특징점 추출 및 거리 측정에 관한 연구)

  • Jung, Dae-Seop;Jang, Mun-Suk;Ryu, Je-Goon;Lee, Eung-Hyuk;Shim, Jae-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.625-627
    • /
    • 2005
  • Existent distance measurement that use camera is method that use both Stereo Camera and Monocular Camera, There is shortcoming that method that use Stereo Camera is sensitive in effect of a lot of expenses and environment variables, and method that use Monocular Camera are big computational complexity and error. In this study, reduce expense and error using Monocular Camera and I suggest algorithm that measure distance, Extract features using scale Invariant features Transform(SIFT) for distance measurement, and this measures distance through features matching and geometrical analysis, Proposed method proves measuring distance with wall by geometrical analysis free wall through feature point abstraction and matching.

  • PDF

Applying SIFT Feature to Occlusion, Damage and Rotation Invariant Traffic Sign Recognition (겹침과 훼손, 회전에 강건한 교통표지판 인식을 위한 SIFT 적용 방법)

  • Kim, Sang-Chul;Lee, Je-Min;Kim, Dae-Youn;Nang, Jong-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.351-353
    • /
    • 2012
  • 교통 표지판은 도로 주행에 있어 분별력 있는 정보를 제공한다. 하지만 주행 중에 가로수나 다른 자동차에 의해 교통 표지판은 가려져 있거나 훼손된 경우가 많다. 또한 자동차가 커브할 때 카메라 영상에는 회전된 객체로 보이게 된다. 이런 경우에 교통 표지판의 인식이 어렵기 때문에 본 논문에서는 각 문제점에 모두 강건한 피처를 이용해 매칭하는 방법을 제안하였다. 본 논문에서 제안한 방법에 기반하여 주행 중 영상에서 보다 분별력 있는 정보를 획득하여 더 많은 응용 분야에 적용할 것으로 기대한다.

A Study on Real-time Processing of The Gaussian Filter using The SSE Instruction Set. (SSE 명령어 기반 실시간 처리 가우시안 필터 연구)

  • Chang, Pil-Jung;Lee, Jong-Soo
    • Annual Conference of KIPS
    • /
    • 2006.11a
    • /
    • pp.89-92
    • /
    • 2006
  • 본 논문은 SIFT(Scale Invariant Feature Transform)알고리즘의 실시간처리 응용프로그램 작성기법을 기술하고 있는데, 단일 프로세서에서 병렬처리 기능을 지원하도록 설계된 SSE 명령어 집합을 사용하여 가우시안 convolution을 구현하고 있다. SIFT알고리즘의 Scale-space를 생성하는 과정에 수행되는 가우시안 Convolution은 연산시간이 과도하게 요구된다.[1] 2D의 가우시안 필터가 영상을 구성하는 모든 셀과 1:1로 연산을 수행하므로 이 연산의 소요시간은 영상의 가로, 세로 길이 그리고 필터의 크기에 비례하여 결정된다. 이 논문에서 제안하는 방법은 연산을 위해 CPU 내부로 한번 읽어 들인 픽셀자료에 대해 가능한 모든 연산을 SSE 명령어 집합을 사용하여 수행함으로써 병렬 연산에 의한 연산시간 절감과 메모리 접근 최소화를 통한 입출력시간 절감을 통해 전체 연산시간을 단축 하였다.

  • PDF

The Implementation of Fast 3D Object Tracking using GPU (GPU를 이용한 3차원 고속 물체 추적 알고리즘 구현)

  • Kim, Su-Hyun;Jo, Chang-woo;Jeong, Chang-sung
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.374-376
    • /
    • 2013
  • 증강 현실(Argument Reality)에 대한 관심이 증가함에 따라 빠르고 강건한 물체 추적(Object Tracking)기법의 개발이 큰 이슈가 되고 있다. 특히, 마커를 사용하지 않는 경우에 추적 속도와 정확도의 정보가 이루어지는 강건한 Markerless 3D 추적 기술은 많은 연구가 이루어지고 있다. 본 논문에서는 SIFT(Scale Invariant Feature Transform)를 이용한 특징점 추출 및 매칭 기법을 통하여 높은 정확도의 물체 추적기법을 제안한다. 그리고 실시간으로 적용하기 어려운 SIFT의 느린 특징점 추출과 매칭 단계를 GPU 기반의 병렬화 작업을 통하여 개선시켜 향상된 추적 속도를 보여준다.

Object Detection Using Deep Learning Algorithm CNN

  • S. Sumahasan;Udaya Kumar Addanki;Navya Irlapati;Amulya Jonnala
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.5
    • /
    • pp.129-134
    • /
    • 2024
  • Object Detection is an emerging technology in the field of Computer Vision and Image Processing that deals with detecting objects of a particular class in digital images. It has considered being one of the complicated and challenging tasks in computer vision. Earlier several machine learning-based approaches like SIFT (Scale-invariant feature transform) and HOG (Histogram of oriented gradients) are widely used to classify objects in an image. These approaches use the Support vector machine for classification. The biggest challenges with these approaches are that they are computationally intensive for use in real-time applications, and these methods do not work well with massive datasets. To overcome these challenges, we implemented a Deep Learning based approach Convolutional Neural Network (CNN) in this paper. The Proposed approach provides accurate results in detecting objects in an image by the area of object highlighted in a Bounding Box along with its accuracy.

Blind Digital Watermarking Methods for Omni-directional Panorama Images using Feature Points (특징점을 이용한 전방위 파노라마 영상의 블라인드 디지털 워터마킹 방법)

  • Kang, I-Seul;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.22 no.6
    • /
    • pp.785-799
    • /
    • 2017
  • One of the most widely used image media in recent years, omni-directional panorama images are attracting much attention. Since this image is ultra-high value-added, the intellectual property of this image must be protected. In this paper, we propose a blind digital watermarking method for this image. In this paper, we assume that the owner of each original image may be different, insert different watermark data into each original image, and extract the watermark from the projected image, which is a form of service of omni- directional panorama image. Therefore, the main target attack in this paper is the image distortion which occurs in the process of the omni- directional panorama image. In this method, SIFT feature points of non-stitched areas are used, and watermark data is inserted into data around each feature point. We propose two methods of using two-dimensional DWT coefficients and spatial domain data as data for inserting watermark. Both methods insert watermark data by QIM method. Through experiments, these two methods show robustness against the distortion generated in the panorama image generation process, and additionally show sufficient robustness against JPEG compression attack.