• Title/Summary/Keyword: SIFT feature

Search Result 231, Processing Time 0.025 seconds

Development of a Raspberry Pi-based Banknote Recognition System for the Visually Impaired (시각장애인을 위한 라즈베리 파이 기반 지폐 인식기 개발)

  • Lee, Jiwan;Ahn, Jihoo;Lee, Ki Yong
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.21-31
    • /
    • 2018
  • Korean banknotes are similar in size, and their braille tend to worn out as they get old. These characteristics of Korean banknotes make the blind people, who mainly rely on the braille, even harder to distinguish the banknotes. Not only that, this can even lead to economic loss. There are already existing systems for recognizing the banknotes, but they don't support Korean banknotes. Furthermore, because they are developed as a mobile application, it is not easy for the blind people to use the system. Therefore, in this paper, we develop a Raspberry Pi-based banknote recognition system that not only recognizes the Korean banknotes but also are easily accessible by the blind people. Our system starts recognition with a very simple action of the user, and the blind people can hear the recognition results by sound. In order to choose the best feature extraction algorithm that directly affects the performance of the system, we compare the performance of SIFT, SURF, and ORB, which are representative feature extraction algorithms at present, in real environments. Through experiments in various real environments, we adopted SIFT to implement our system, which showed the highest accuracy of 95%.

Vision-based Obstacle Detection using Geometric Analysis (기하학적 해석을 이용한 비전 기반의 장애물 검출)

  • Lee Jong-Shill;Lee Eung-Hyuk;Kim In-Young;Kim Sun-I.
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.43 no.3 s.309
    • /
    • pp.8-15
    • /
    • 2006
  • Obstacle detection is an important task for many mobile robot applications. The methods using stereo vision and optical flow are computationally expensive. Therefore, this paper presents a vision-based obstacle detection method using only two view images. The method uses a single passive camera and odometry, performs in real-time. The proposed method is an obstacle detection method using 3D reconstruction from taro views. Processing begins with feature extraction for each input image using Dr. Lowe's SIFT(Scale Invariant Feature Transform) and establish the correspondence of features across input images. Using extrinsic camera rotation and translation matrix which is provided by odometry, we could calculate the 3D position of these corresponding points by triangulation. The results of triangulation are partial 3D reconstruction for obstacles. The proposed method has been tested successfully on an indoor mobile robot and is able to detect obstacles at 75msec.

Robust Face and Facial Feature Tracking in Image Sequences (연속 영상에서 강인한 얼굴 및 얼굴 특징 추적)

  • Jang, Kyung-Shik;Lee, Chan-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.9
    • /
    • pp.1972-1978
    • /
    • 2010
  • AAM(Active Appearance Model) is one of the most effective ways to detect deformable 2D objects and is a kind of mathematical optimization methods. The cost function is a convex function because it is a least-square function, but the search space is not convex space so it is not guaranteed that a local minimum is the optimal solution. That is, if the initial value does not depart from around the global minimum, it converges to a local minimum, so it is difficult to detect face contour correctly. In this study, an AAM-based face tracking algorithm is proposed, which is robust to various lighting conditions and backgrounds. Eye detection is performed using SIFT and Genetic algorithm, the information of eye are used for AAM's initial matching information. Through experiments, it is verified that the proposed AAM-based face tracking method is more robust with respect to pose and background of face than the conventional basic AAM-based face tracking method.

Object-based Image Retrieval for Color Query Image Detection (컬러 질의 영상 검출을 위한 객체 기반 영상 검색)

  • Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.3
    • /
    • pp.97-102
    • /
    • 2008
  • In this paper we propose an object-based image retrieval method using spatial color model and feature points registration method for an effective color query detection. The proposed method in other to overcome disadvantages of existing color histogram methods and then this method is use the HMMD model and rough set in order to segment and detect the wanted image parts as a real time without the user's manufacturing in the database image and query image. Here, we select candidate regions in the similarity between the query image and database image. And we use SIFT registration methods in the selected region for object retrieving. The experimental results show that the proposed method is more satisfactory detection radio than conventional method.

Remote Sensing of Nearshore Currents using Coastal Optical Imagery (해안 광학영상 자료를 이용한 쇄파지역 연안류 측정기술)

  • Yoo, Jeseon;Kim, Sun-Sin
    • Ocean and Polar Research
    • /
    • v.37 no.1
    • /
    • pp.11-22
    • /
    • 2015
  • In-situ measurements are labor-intensive, time-consuming, and limited in their ability to observe currents with spatial variations in the surf zone. This paper proposes an optical image-based method of measurement of currents in the surf zone. This method measures nearshore currents by tracking in time wave breaking-induced foam patches from sequential images. Foam patches in images tend to be arrayed with irregular pixel intensity values, which are likely to remain consistent for a short period of time. This irregular intensity feature of a foam patch is characterized and represented as a keypoint using an image-based object recognition method, i.e., Scale Invariant Feature Transform (SIFT). The keypoints identified by the SIFT method are traced from time sequential images to produce instantaneous velocity fields. In order to remove erroneous velocities, the instantaneous velocity fields are filtered by binding them within upper and lower limits, and averaging the velocity data in time and space with a certain interval. The measurements that are obtained by this method are comparable to the results estimated by an existing image-based method of observing currents, named the Optical Current Meter (OCM).

Pan-sharpening Effect in Spatial Feature Extraction

  • Han, Dong-Yeob;Lee, Hyo-Seong
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.359-367
    • /
    • 2011
  • A suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. The research on pan-sharpening algorithm in improving the accuracy of image classification has been reported. For a classification, preserving the spectral information is important. Other applications such as road detection depend on a sharp and detailed display of the scene. Various criteria applied to scenes with different characteristics should be used to compare the pan-sharpening methods. The pan-sharpening methods in our research comprise rather common techniques like Brovey, IHS(Intensity Hue Saturation) transform, and PCA(Principal Component Analysis), and more complex approaches, including wavelet transformation. The extraction of matching pairs was performed through SIFT descriptor and Canny edge detector. The experiments showed that pan-sharpening techniques for spatial enhancement were effective for extracting point and linear features. As a result of the validation it clearly emphasized that a suitable pan-sharpening method has to be chosen with respect to the used spectral characteristic of the multispectral bands and the intended application. In future it is necessary to design hybrid pan-sharpening for the updating of features and land-use class of a map.

GUI-based Detection of Usage-state Changes in Mobile Apps (GUI에 기반한 모바일 앱 사용상태 구분)

  • Kang, Ryangkyung;Seok, Ho-Sik
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.448-453
    • /
    • 2019
  • Under the conflicting objectives of maximum user satisfaction and fast launching, there exist great needs for automated mobile app testing. In automated app testing, detection of usage-state changes is one of the most important issues for minimizing human intervention and testing of various usage scenarios. Because conventional approaches utilizing pre-collected training examples can not handle the rapid evolution of apps, we propose a novel method detecting changes in usage-state through graph-entropy. In the proposed method, widgets in a screen shot are recognized through DNNs and 'onverted graphs. We compared the performance of the proposed method with a SIFT (Scale-Invariant Feature Transform) based method on 20 real-world apps. In most cases, our method achieved superior results, but we found some situations where further improvements are required.

Human hand gesture identification framework using SIFT and knowledge-level technique

  • Muhammad Haroon;Saud Altaf;Zia-ur- Rehman;Muhammad Waseem Soomro;Sofia Iqbal
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1022-1034
    • /
    • 2023
  • In this study, the impact of varying lighting conditions on recognition and decision-making was considered. The luminosity approach was presented to increase gesture recognition performance under varied lighting. An efficient framework was proposed for sensor-based sign language gesture identification, including picture acquisition, preparing data, obtaining features, and recognition. The depth images were collected using multiple Microsoft Kinect devices, and data were acquired by varying resolutions to demonstrate the idea. A case study was designed to attain acceptable accuracy in gesture recognition under variant lighting. Using American Sign Language (ASL), the dataset was created and analyzed under various lighting conditions. In ASL-based images, significant feature points were selected using the scale-invariant feature transformation (SIFT). Finally, an artificial neural network (ANN) classified hand gestures using specified characteristics for validation. The suggested method was successful across a variety of illumination conditions and different image sizes. The total effectiveness of NN architecture was shown by the 97.6% recognition accuracy rate of 26 alphabets dataset with just a 2.4% error rate.

The Implementation of Fast Object Recognition Using Parallel Processing on CPU and GPU (CPU와 GPU의 병렬 처리를 이용한 고속 물체 인식 알고리즘 구현)

  • Kim, Jun-Chul;Jung, Young-Han;Park, Eun-Soo;Cui, Xue-Nan;Kim, Hak-Il;Huh, Uk-Youl
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.5
    • /
    • pp.488-495
    • /
    • 2009
  • This paper presents a fast feature extraction method for autonomous mobile robots utilizing parallel processing and based on OpenMP, SSE (Streaming SIMD Extension) and CUDA programming. In the first step on CPU version, the algorithms and codes are optimized and then implemented by parallel processing. The parallel algorithms are debugged to maintain the same level of performance and the process for extracting key points and obtaining dominant orientation with respect to key points is parallelized. After extraction, a parallel descriptor via SSE instructions is constructed. And the GPU version also implemented by parallel processing using CUDA based on the SIFT. The GPU-Parallel descriptor achieves an acceleration up to five times compared with the CPU-Parallel descriptor, but it shows the lower performance than CPU version. CPU version also speed-up the four and half times compared with the original SIFT while maintaining robust performance.

The Comparison of the SIFT Image Descriptor by Contrast Enhancement Algorithms with Various Types of High-resolution Satellite Imagery

  • Choi, Jaw-Wan;Kim, Dae-Sung;Kim, Yong-Min;Han, Dong-Yeob;Kim, Yong-Il
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.325-333
    • /
    • 2010
  • Image registration involves overlapping images of an identical region and assigning the data into one coordinate system. Image registration has proved important in remote sensing, enabling registered satellite imagery to be used in various applications such as image fusion, change detection and the generation of digital maps. The image descriptor, which extracts matching points from each image, is necessary for automatic registration of remotely sensed data. Using contrast enhancement algorithms such as histogram equalization and image stretching, the normalized data are applied to the image descriptor. Drawing on the different spectral characteristics of high resolution satellite imagery based on sensor type and acquisition date, the applied normalization method can be used to change the results of matching interest point descriptors. In this paper, the matching points by scale invariant feature transformation (SIFT) are extracted using various contrast enhancement algorithms and injection of Gaussian noise. The results of the extracted matching points are compared with the number of correct matching points and matching rates for each point.