• Title/Summary/Keyword: SIFT feature

Search Result 231, Processing Time 0.027 seconds

Development of a SLAM System for Small UAVs in Indoor Environments using Gaussian Processes (가우시안 프로세스를 이용한 실내 환경에서 소형무인기에 적합한 SLAM 시스템 개발)

  • Jeon, Young-San;Choi, Jongeun;Lee, Jeong Oog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1098-1102
    • /
    • 2014
  • Localization of aerial vehicles and map building of flight environments are key technologies for the autonomous flight of small UAVs. In outdoor environments, an unmanned aircraft can easily use a GPS (Global Positioning System) for its localization with acceptable accuracy. However, as the GPS is not available for use in indoor environments, the development of a SLAM (Simultaneous Localization and Mapping) system that is suitable for small UAVs is therefore needed. In this paper, we suggest a vision-based SLAM system that uses vision sensors and an AHRS (Attitude Heading Reference System) sensor. Feature points in images captured from the vision sensor are obtained by using GPU (Graphics Process Unit) based SIFT (Scale-invariant Feature Transform) algorithm. Those feature points are then combined with attitude information obtained from the AHRS to estimate the position of the small UAV. Based on the location information and color distribution, a Gaussian process model is generated, which could be a map. The experimental results show that the position of a small unmanned aircraft is estimated properly and the map of the environment is constructed by using the proposed method. Finally, the reliability of the proposed method is verified by comparing the difference between the estimated values and the actual values.

Study of Methodology for Recognizing Multiple Objects (다중물체 인식 방법론에 관한 연구)

  • Lee, Hyun-Chang;Koh, Jin-Kwang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.51-57
    • /
    • 2008
  • In recent computer vision or robotics fields, the research area of object recognition from image using low cost web camera or other video device is performed actively. As study for this, there are various methodologies suggested to retrieve objects in robotics and vision research areas. Also, robotics is designed and manufactured to aim at doing like human being. For instance, a person perceives apples as one see apples because of previously knowing the fact that it is apple in one's mind. Like this, robotics need to store the information of any object of what the robotics see. Therefore, in this paper, we propose an methodology that we can rapidly recognize objects which is stored in object database by using SIFT (scale invariant feature transform) algorithm to get information about the object. And then we implement the methodology to enable to recognize simultaneously multiple objects in an image.

  • PDF

The Target Detection and Classification Method Using SURF Feature Points and Image Displacement in Infrared Images (적외선 영상에서 변위추정 및 SURF 특징을 이용한 표적 탐지 분류 기법)

  • Kim, Jae-Hyup;Choi, Bong-Joon;Chun, Seung-Woo;Lee, Jong-Min;Moon, Young-Shik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.11
    • /
    • pp.43-52
    • /
    • 2014
  • In this paper, we propose the target detection method using image displacement, and classification method using SURF(Speeded Up Robust Features) feature points and BAS(Beam Angle Statistics) in infrared images. The SURF method that is a typical correspondence matching method in the area of image processing has been widely used, because it is significantly faster than the SIFT(Scale Invariant Feature Transform) method, and produces a similar performance. In addition, in most SURF based object recognition method, it consists of feature point extraction and matching process. In proposed method, it detects the target area using the displacement, and target classification is performed by using the geometry of SURF feature points. The proposed method was applied to the unmanned target detection/recognition system. The experimental results in virtual images and real images, we have approximately 73~85% of the classification performance.

Implementation of the Panoramic System Using Feature-Based Image Stitching (특징점 기반 이미지 스티칭을 이용한 파노라마 시스템 구현)

  • Choi, Jaehak;Lee, Yonghwan;Kim, Youngseop
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.61-65
    • /
    • 2017
  • Recently, the interest and research on 360 camera and 360 image production are expanding. In this paper, we describe the feature extraction algorithm, alignment and image blending that make up the feature-based stitching system. And it deals with the theory of representative algorithm at each stage. In addition, the feature-based stitching system was implemented using OPENCV library. As a result of the implementation, the brightness of the two images is different, and it feels a sense of heterogeneity in the resulting image. We will study the proper preprocessing to adjust the brightness value to improve the accuracy and seamlessness of the feature-based stitching system.

  • PDF

SIFT Feature Based Digital Watermarking Method for VR Image (VR영상을 위한 SIFT 특징점 기반 디지털 워터마킹 방법)

  • Moon, Won-Jun;Seo, Young-Ho;Kim, Dong-Wook
    • Journal of Broadcast Engineering
    • /
    • v.24 no.6
    • /
    • pp.1152-1162
    • /
    • 2019
  • With the rapid development of the VR industry, many VR contents are produced and circulated, and the need for copyright protection is increasing. In this paper, we propose a method of embedding and extracting watermarks in consideration of VR production process. In embedding, SIFT is performed by selecting the region where distortion is minimized in VR production, and transformed into frequency domain using DWT and embedded into the QIM method. In extracting process, in order to correct the distortion in the projection process, the top and bottom regions are changed to different projection methods and some middle regions are rotated using 3DoF to extract the watermark. After this processing, extracted watermark has higher accuracy than the conventional watermark method, and the validity of the proposed watermark is shown by showing that the accuracy is maintained even in various attacks.

Panoramic Image Composition Algorithm through Scaling and Rotation Invariant Features (크기 및 회전 불변 특징점을 이용한 파노라마 영상 합성 알고리즘)

  • Kwon, Ki-Won;Lee, Hae-Yeoun;Oh, Duk-Hwan
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.333-344
    • /
    • 2010
  • This paper addresses the way to compose paronamic images from images taken the same objects. With the spread of digital camera, the panoramic image has been studied to generate with its interest. In this paper, we propose a panoramic image generation method using scaling and rotation invariant features. First, feature points are extracted from input images and matched with a RANSAC algorithm. Then, after the perspective model is estimated, the input image is registered with this model. Since the SURF feature extraction algorithm is adapted, the proposed method is robust against geometric distortions such as scaling and rotation. Also, the improvement of computational cost is achieved. In the experiment, the SURF feature in the proposed method is compared with features from Harris corner detector or the SIFT algorithm. The proposed method is tested by generating panoramic images using $640{\times}480$ images. Results show that it takes 0.4 second in average for computation and is more efficient than other schemes.

Improving Matching Performance of SURF Using Color and Relative Position (위치와 색상 정보를 사용한 SURF 정합 성능 향상 기법)

  • Lee, KyungSeung;Kim, Daehoon;Rho, Seungmin;Hwang, Eenjun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.394-400
    • /
    • 2012
  • SURF is a robust local invariant feature descriptor and has been used in many applications such as object recognition. Even though this algorithm has similar matching accuracy compared to the SIFT, which is another popular feature extraction algorithm, it has advantage in matching time. However, these descriptors do not consider relative location information of extracted interesting points to guarantee rotation invariance. Also, since they use gray image of original color image, they do not use the color information of images, either. In this paper, we propose a method for improving matching performance of SURF descriptor using the color and relative location information of interest points. The location information is built from the angles between the line connecting the centers of interest points and the orientation line constructed for the center of each interest points. For the color information, color histogram is constructed for the region of each interest point. We show the performance of our scheme through experiments.

Gradual Block-based Efficient Lossy Location Coding for Image Retrieval (영상 검색을 위한 점진적 블록 크기 기반의 효율적인 손실 좌표 압축 기술)

  • Choi, Gyeongmin;Jung, Hyunil;Kim, Haekwang
    • Journal of Broadcast Engineering
    • /
    • v.18 no.2
    • /
    • pp.319-322
    • /
    • 2013
  • Image retrieval research activity has moved its focus from global descriptors to local descriptors of feature point such as SIFT. MPEG is Currently working on standardization of effective coding of location and local descriptors of feature point in the context mobile based image search driven application in the name of MPEG-7 CDVS (Compact Descriptor for Visual Search). The extracted feature points consist of two parts, location information and Descriptor. For efficient image retrieval, we proposed a novel method that is gradual block-based efficient lossy location coding to compress location information according to distribution in images. From experimental result, the number of average bits per feature point reduce 5~6% and the accuracy rate keep compared to state of the art TM 3.0.

A Comparative Study on Object Recognition about Performance and Speed (물체 인식의 성능 및 속도 개선 방향에 대한 비교 연구)

  • Kim, Jun-Chul;Kim, Hak-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1055-1056
    • /
    • 2008
  • In this paper, we survey various Robust Object Recognition Algorithms. One of the core technologies for local feature detector is Scale Invariant Feature Transform. And we compared several algorithms with SIFT based on IPP technology. As a result, the conversion of source codes using IPP is sped up. And this will be more improved recognition speed using SIMD Instructions.

  • PDF

An Algorithm of Feature Map Updating for Localization using Scale-Invariant Feature Transform (자기 위치 결정을 위한 SIFT 기반의 특징 지도 갱신 알고리즘)

  • Lee, Jae-Kwang;Huh, Uk-Youl;Kim, Hak-Il
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.141-143
    • /
    • 2004
  • This paper presents an algorithm in which a feature map is built and localization of a mobile robot is carried out for indoor environments. The algorithm proposes an approach which extracts scale-invariant features of natural landmarks from a pair of stereo images. The feature map is built using these features and updated by merging new landmarks into the map and removing transient landmarks over time. And the position of the robot in the map is estimated by comparing with the map in a database by means of an Extended Kalman filter. This algorithm is implemented and tested using a Pioneer 2-DXE and preliminary results are presented in this paper.

  • PDF