• Title/Summary/Keyword: SIFT feature

Search Result 231, Processing Time 0.029 seconds

A New Three-dimensional Integrated Multi-index Method for CBIR System

  • Zhang, Mingzhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.993-1014
    • /
    • 2021
  • This paper proposes a new image retrieval method called the 3D integrated multi-index to fuse SIFT (Scale Invariant Feature Transform) visual words with other features at the indexing level. The advantage of the 3D integrated multi-index is that it can produce finer subdivisions in the search space. Compared with the inverted indices of medium-sized codebook, the proposed method increases time slightly in preprocessing and querying. Particularly, the SIFT, contour and colour features are fused into the integrated multi-index, and the joint cooperation of complementary features significantly reduces the impact of false positive matches, so that effective image retrieval can be achieved. Extensive experiments on five benchmark datasets show that the 3D integrated multi-index significantly improves the retrieval accuracy. While compared with other methods, it requires an acceptable memory usage and query time. Importantly, we show that the 3D integrated multi-index is well complementary to many prior techniques, which make our method compared favorably with the state-of-the-arts.

Slab Region Localization for Text Extraction using SIFT Features (문자열 검출을 위한 슬라브 영역 추정)

  • Choi, Jong-Hyun;Choi, Sung-Hoo;Yun, Jong-Pil;Koo, Keun-Hwi;Kim, Sang-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.5
    • /
    • pp.1025-1034
    • /
    • 2009
  • In steel making production line, steel slabs are given a unique identification number. This identification number, Slab management number(SMN), gives information about the use of the slab. Identification of SMN has been done by humans for several years, but this is expensive and not accurate and it has been a heavy burden on the workers. Consequently, to improve efficiency, automatic recognition system is desirable. Generally, a recognition system consists of text localization, text extraction, character segmentation, and character recognition. For exact SMN identification, all the stage of the recognition system must be successful. In particular, the text localization is great important stage and difficult to process. However, because of many text-like patterns in a complex background and high fuzziness between the slab and background, directly extracting text region is difficult to process. If the slab region including SMN can be detected precisely, text localization algorithm will be able to be developed on the more simple method and the processing time of the overall recognition system will be reduced. This paper describes about the slab region localization using SIFT(Scale Invariant Feature Transform) features in the image. First, SIFT algorithm is applied the captured background and slab image, then features of two images are matched by Nearest Neighbor(NN) algorithm. However, correct matching rate can be low when two images are matched. Thus, to remove incorrect match between the features of two images, geometric locations of the matched two feature points are used. Finally, search rectangle method is performed in correct matching features, and then the top boundary and side boundaries of the slab region are determined. For this processes, we can reduce search region for extraction of SMN from the slab image. Most cases, to extract text region, search region is heuristically fixed [1][2]. However, the proposed algorithm is more analytic than other algorithms, because the search region is not fixed and the slab region is searched in the whole image. Experimental results show that the proposed algorithm has a good performance.

The Improvement of Operating time for Object Recognition using Block Segmentation (블록분할을 이용한 물체인식 속도개선)

  • Ko, Jong-Hwan;Cho, Nae-Soo;Choi, Youn-Ho;Koo, Bon-Ho;Kwon, Woo-Hyen
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.105-106
    • /
    • 2008
  • 영상을 이용한 물체인식은 컴퓨터 비젼분야의 주요한 관심분야중 하나이다. 이중 특정기반 물체인식은 영상이 가지고 있는 특징점을 이용하는 방법으로 입력영상과 물체에 대한 질의 영상의 특징점을 검출하고 매칭을 수행하여 물체를 인식하게 된다. 특징점은 스케일, 회전, 어파인 변화 등에 변하지 않는 특징을 가지고 있는 점을 말한다. 이러한 특징점을 구하기 위하여 사용하는 방범으로는 SIFT(Scale Invariant Feature Transform)가 있다. SIFT는 스케일, 회선, 어파인 변화에 우수한 성능을 보여주기는 하나 많은 연산으로 인하여 처리속도가 느리다는 단점이 존재한다. 이에 본 논문에서는 SIFT를 사용한 특징기반 물체인식에서 속도 개선 방법에 대하여 제안하였다. 제안한 방법을 사용하였을 경우 물체인식을 위한 특징점을 검출하고 매칭을 수행하는데 소모된 시간이 줄어드는 것을 실험을 통하여 확인 하였다.

  • PDF

Object Recognition using Multiple Local Features (로컬영역에서 다중 특징을 이용한 물체인식)

  • 최경영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.604-606
    • /
    • 2003
  • 본 논문은 향상된 Scale Invariant Feature Transform (SIFT) 기법과 이로부터 얻어진 로컬 특징 영역에서 다중특징을 이용한 물체인식 방법에 대하여 논하였다. SIFT 기법 [1]은 물체의 크기. 회전. 3차원 좌표변환에 강인한 특성을 갖는다. 이 기법에서는 크기가 다른 가우시안 (Gaussian) 함수를 적용한 영상들의 차이에서의 최대 및 최소값이 특징점으로 결정된다. 하지만 SIFT 알고리듬의 특성상, 인식되어야 될 물체의 비교적 큰 크기 변화, 중요도가 낮은 특징점들의 추출, 그리고 서로 다른 물체에서 추출된 유사한 특징벡터등이 인식 시스템의 신뢰도를 저하 시킬 수 있다. 이에 대응방안으로, 본 논문에서는 상대적으로 낮은 인식정보를 갖는 추출된 특징점을 제거하기 위한 기법과 서로 다른 물체에서 생성된 유사 특징벡터의 구분을 위한 특징점에서의 방위 (orientation) 비교법 및 색차 (chrominance) 정보를 사용에 대하여 기술하였다.

  • PDF

Performance Experiment and Analysis for SIFT on Hardware (SIFT 하드웨어 구현을위한 성능 실험 및 분석)

  • Uh, Young-Jung;Park, Jin-Hong;Han, Tack-Don;Byun, Hye-Ran
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.525-529
    • /
    • 2010
  • 최근 많은 컴퓨팅 작업들이 모바일로 옮겨지기 시작하면서 존재하는 알고리즘을 하드웨어에 구현하여 속도를 높이는 것이 이슈가 되고 있다. 그 중 영상의 특징 점을 기반으로 두 개 이상의 영상을 매칭하는 기술을 중심으로 하는 기술이 다양한 분야에서 연구되고 있다. 본 논문에서는 다양한 분야에서 널리 활용되는 Scale Invariant Feature Transform(SIFT)라는 특징 점 추출 알고리즘의 성능을 분석하여 모바일 디바이스를 위한 비용대비 성능이 높은 최적의 매개변수를 찾는다.

  • PDF

Comparison of Image Matching Method for Automatic Matching of High Resolution SAR Imagery (SAR 영상 자동정합을 위한 영상정합기법의 비교연구)

  • Baek, Sang Ho;Hong, Seung Hwan;Yoo, Su Hong;Sohn, Hong Gyoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1639-1644
    • /
    • 2014
  • SAR satellite can acquire clear imagery regardless of weather and the images are widely used for land management, natural hazard monitoring and many other applications. Automatic image matching technique is necessary for management of a huge amount of SAR data. Nevertheless, it is difficult to assure the accuracy of image matching due to the difference of image-capturing attitude and time. In this paper, we compared performances of MI method, FMT method and SIFT method by applying arbitrary displacement and rotation to TerraSAR-X images and changing resolution of the images. As a result, when the features having specific intensity were distributed well in SAR imagery, MI method could assure 0~2 pixels accuracy even if the images were captured in different geometry. But the accuracy of FMT method was significantly poor for the images having different spatial resolutions and the error was represented by tens or hundreds pixels. Moreover, the ratio of corresponding matching points for SIFT method was only 0~17% and it was difficult for SIFT method to apply to SAR images captured in different geometry.

Genetic lesion matching algorithm using medical image (의료영상 이미지를 이용한 유전병변 정합 알고리즘)

  • Cho, Young-bok;Woo, Sung-Hee;Lee, Sang-Ho;Han, Chang-Su
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.960-966
    • /
    • 2017
  • In this paper, we proposed an algorithm that can extract lesion by inputting a medical image. Feature points are extracted using SIFT algorithm to extract genetic training of medical image. To increase the intensity of the feature points, the input image and that raining image are matched using vector similarity and the lesion is extracted. The vector similarity match can quickly lead to lesions. Since the direction vector is generated from the local feature point pair, the direction itself only shows the local feature, but it has the advantage of comparing the similarity between the other vectors existing between the two images and expanding to the global feature. The experimental results show that the lesion matching error rate is 1.02% and the processing speed is improved by about 40% compared to the case of not using the feature point intensity information.

Parallelization of Feature Detection and Panorama Image Generation using OpenCL and Embedded GPU (OpenCL 및 Embedded GPU를 이용한 영상 특징 추출 및 파노라마 영상 생성의 병렬화)

  • Kang, Seung Heon;Lee, Seung-Jae;Lee, Man Hee;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.19 no.3
    • /
    • pp.316-328
    • /
    • 2014
  • In this paper, we parallelize the popular feature detection algorithms, i.e. SIFT and SURF, and its application to fast panoramic image generation on the latest embedded GPU. Parallelized algorithms are implemented using recently developed OpenCL as the embedded GPGPU software platform. We compare the implementation efficiency and speed performance of conventional OpenGL Shading Language and OpenCL. Experimental result shows that implementation on OpenCL has comparable performance with GLSL. Compared with the performance on the embedded CPU in the same application processor, the embedded GPU runs 3~4 times faster. As an example of using feature extraction, panorama image synthesis is performed on embedded GPU by applying image matching using detected features.

Mosaic image generation of AISA Eagle hyperspectral sensor using SIFT method (SIFT 기법을 이용한 AISA Eagle 초분광센서의 모자이크영상 생성)

  • Han, You Kyung;Kim, Yong Il;Han, Dong Yeob;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • In this paper, high-quality mosaic image is generated by high-resolution hyperspectral strip images using scale-invariant feature transform (SIFT) algorithm, which is one of the representative image matching methods. The experiments are applied to AISA Eagle images geo-referenced by using GPS/INS information acquired when it was taken on flight. The matching points between three strips of hyperspectral images are extracted using SIFT method, and the transformation models between images are constructed from the points. Mosaic image is, then, generated using the transformation models constructed from corresponding images. Optimal band appropriate for the matching point extraction is determined by selecting representative bands of hyperspectral data and analyzing the matched results based on each band. Mosaic image generated by proposed method is visually compared with the mosaic image generated from initial geo-referenced AISA hyperspectral images. From the comparison, we could estimate geometrical accuracy of generated mosaic image and analyze the efficiency of our methodology.

Object Recogniton for Markerless Augmented Reality Embodiment (마커 없는 증강 현실 구현을 위한 물체인식)

  • Paul, Anjan Kumar;Lee, Hyung-Jin;Kim, Young-Bum;Islam, Mohammad Khairul;Baek, Joong-Hwan
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.1
    • /
    • pp.126-133
    • /
    • 2009
  • In this paper, we propose an object recognition technique for implementing marker less augmented reality. Scale Invariant Feature Transform (SIFT) is used for finding the local features from object images. These features are invariant to scale, rotation, translation, and partially invariant to illumination changes. Extracted Features are distinct and have matched with different image features in the scene. If the trained image is properly matched, then it is expected to find object in scene. In this paper, an object is found from a scene by matching the template images that can be generated from the first frame of the scene. Experimental results of object recognition for 4 kinds of objects showed that the proposed technique has a good performance.

  • PDF