• Title/Summary/Keyword: SIDI

Search Result 450, Processing Time 0.019 seconds

Thermal flexural analysis of anti-symmetric cross-ply laminated plates using a four variable refined theory

  • Belbachir, Nasrine;Bourada, Mohamed;Draiche, Kada;Tounsi, Abdelouahed;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.409-422
    • /
    • 2020
  • This article deals with the flexural analysis of anti-symmetric cross-ply laminated plates under nonlinear thermal loading using a refined plate theory with four variables. In this theory, the undetermined integral terms are used and the number of variables is reduced to four, instead of five or more in other higher-order theories. The boundary conditions on the top and the bottom surfaces of the plate are satisfied; hence the use of the transverse shear correction factors is avoided. The principle of virtual work is used to obtain governing equations and boundary conditions. Navier solution for simply supported plates is used to derive analytical solutions. For the validation of the present theory, numerical results for displacements and stresses are compared with those of classical, first-order, higher-order and trigonometric shear theories reported in the literature.

Impact of the homogenization models on the thermoelastic response of FG plates on variable elastic foundation

  • Rachedi, Mohamed Ali;Benyoucef, Samir;Bouhadra, Abdelhakim;Bouiadjra, Rabbab Bachir;Sekkal, Mohamed;Benachour, Abdelkader
    • Geomechanics and Engineering
    • /
    • v.22 no.1
    • /
    • pp.65-80
    • /
    • 2020
  • This paper presents a theoretical investigation on the response of the thermo-mechanical bending of FG plate on variable elastic foundation. A quasi-3D higher shear deformation theory is used that contains undetermined integral forms and involves only four unknowns to derive. The FG plates are supposed simply supported with temperature-dependent material properties and subjected to nonlinear temperature rise. Various homogenization models are used to estimate the effective material properties such as temperature-dependent thermoelastic properties. Equations of motion are derived from the principle of virtual displacements and Navier's solution is used to solve the problem of simply supported plates. Numerical results for deflections and stresses of FG plate with temperature-dependent material properties are investigated. It can be concluded that the proposed theory is accurate and simple in solving the thermoelastic bending behavior of FG thick plates.

An efficient and simple shear deformation theory for free vibration of functionally graded rectangular plates on Winkler-Pasternak elastic foundations

  • Abdelbari, Salima;Fekrar, Abdelkader;Heireche, Houari;Said, Hayat;Tounsi, Abdelouahed;Adda Bedia, E.A.
    • Wind and Structures
    • /
    • v.22 no.3
    • /
    • pp.329-348
    • /
    • 2016
  • This work presents a simple hyperbolic shear deformation theory for analysis of functionally graded plates resting on elastic foundation. The proposed model contains fewer number of unknowns and equations of motion than the first-order shear deformation model, but the transverse shear stresses account for a hyperbolic variation and respect the tangential stress-free boundary conditions on the plate boundary surface without introducing shear correction factors. Equations of motion are obtained from Hamilton's principle. The Navier-type analytical solutions for simply-supported plates are compared with the existing solutions to demonstrate the accuracy of the proposed theory.

Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory

  • Chikh, Abdelbaki;Bakora, Ahmed;Heireche, Houari;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Bedia, E.A. Adda
    • Structural Engineering and Mechanics
    • /
    • v.57 no.4
    • /
    • pp.617-639
    • /
    • 2016
  • In this work, an analytical formulation based on both hyperbolic shear deformation theory and stress function, is presented to study the nonlinear post-buckling response of symmetric functionally graded plates supported by elastic foundations and subjected to in-plane compressive, thermal and thermo-mechanical loads. Elastic properties of material are based on sigmoid power law and varying across the thickness of the plate (S-FGM). In the present formulation, Von Karman nonlinearity and initial geometrical imperfection of plate are also taken into account. By utilizing Galerkin procedure, closed-form expressions of buckling loads and post-buckling equilibrium paths for simply supported plates are obtained. The effects of different parameters such as material and geometrical characteristics, temperature, boundary conditions, foundation stiffness and imperfection on the mechanical and thermal buckling and post-buckling loading capacity of the S-FGM plates are investigated.

Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model

  • Salah, Fethi;Boucham, Belhadj;Bourada, Fouad;Benzair, Abdelnour;Bousahla, Abdelmoumen Anis;Tounsi, Abdeldjebbar
    • Steel and Composite Structures
    • /
    • v.33 no.6
    • /
    • pp.805-822
    • /
    • 2019
  • In this work, a simple four-variable integral plate theory is employed for examining the thermal buckling properties of functionally graded material (FGM) sandwich plates. The proposed kinematics considers integral terms which include the effect of transverse shear deformations. Material characteristics and thermal expansion coefficient of the ceramic-metal FGM sandwich plate faces are supposed to be graded in the thickness direction according to a "simple power-law" variation in terms of the "volume fractions" of the constituents. The central layer is always homogeneous and consists of an isotropic material. The thermal loads are supposed as uniform, linear, and nonlinear temperature rises within the thickness direction. The influences of geometric ratios, gradient index, loading type, and type sandwich plate on the buckling properties are examined and discussed in detail.

Bending analysis of functionally graded porous plates via a refined shear deformation theory

  • Zine, Abdallah;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Benrahou, Kouider Halim;Tounsi, Abdeldjebbar;Adda Bedia, E.A.;Mahmoud, S.R.;Tounsi, Abdelouahed
    • Computers and Concrete
    • /
    • v.26 no.1
    • /
    • pp.63-74
    • /
    • 2020
  • In this investigation, study of the bending response of functionally graded (FG) porous plates is presented using a cubic shear deformation theory. The properties of the FG-plate vary according to a power-law distribution which is modified to approximate material characteristics for considering the effect of porosities. The equilibrium equations are derived by using the principle of virtual work and solved by using Navier's procedure. Various numerical results are discussed to demonstrate the influence of the variation of the power index, the porosity parameter and the geometric ratios on the bending response of FG porous plates.

On the bending and stability of nanowire using various HSDTs

  • Youcef, Djamel Ould;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Benzair, Abdelnour;Heireche, Houari
    • Advances in nano research
    • /
    • v.3 no.4
    • /
    • pp.177-191
    • /
    • 2015
  • In this article, various higher-order shear deformation theories (HSDTs) are developed for bending and buckling behaviors of nanowires including surface stress effects. The most important assumption used in different proposed beam theories is that the deflection consists of bending and shear components and thus the theories have the potential to be utilized for modeling of the surface stress influences on nanowires problems. Numerical results are illustrated to prove the difference between the response of the nanowires predicted by the classical and non-classical solutions which depends on the magnitudes of the surface elastic constants.

Free vibration analysis of angle-ply laminated composite and soft core sandwich plates

  • Sahla, Meriem;Saidi, Hayat;Draiche, Kada;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.33 no.5
    • /
    • pp.663-679
    • /
    • 2019
  • In this work, a simple four-variable trigonometric shear deformation model with undetermined integral terms to consider the influences of transverse shear deformation is applied for the dynamic analysis of anti-symmetric laminated composite and soft core sandwich plates. Unlike the existing higher order theories, the current one contains only four unknowns. The equations of motion are obtained using the principle of virtual work. The analytical solution is determined by solving the eigenvalue problem. The influences of geometric ratio, modular ratio and fibre angle are critically evaluated for different problems of laminated composite and sandwich plates. The eigenfrequencies obtained using the current theory are verified by comparing the results with those of other theories and with the exact elasticity solution, if any.

Assessment of new 2D and quasi-3D nonlocal theories for free vibration analysis of size-dependent functionally graded (FG) nanoplates

  • Bendaho, Boudjema;Belabed, Zakaria;Bourada, Mohamed;Benatta, Mohamed Atif;Bourada, Fouad;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.7 no.4
    • /
    • pp.277-292
    • /
    • 2019
  • In this present paper, a new two dimensional (2D) and quasi three dimensional (quasi-3D) nonlocal shear deformation theories are formulated for free vibration analysis of size-dependent functionally graded (FG) nanoplates. The developed theories is based on new description of displacement field which includes undetermined integral terms, the issues in using this new proposition are to reduce the number of unknowns and governing equations and exploring the effects of both thickness stretching and size-dependency on free vibration analysis of functionally graded (FG) nanoplates. The nonlocal elasticity theory of Eringen is adopted to study the size effects of FG nanoplates. Governing equations are derived from Hamilton's principle. By using Navier's method, analytical solutions for free vibration analysis are obtained through the results of eigenvalue problem. Several numerical examples are presented and compared with those predicted by other theories, to demonstrate the accuracy and efficiency of developed theories and to investigate the size effects on predicting fundamental frequencies of size-dependent functionally graded (FG) nanoplates.

Buckling behavior of rectangular plates under uniaxial and biaxial compression

  • Bourada, Mohamed;Bouadi, Abed;Bousahla, Abdelmoumen Anis;Senouci, Amel;Bourada, Fouad;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Structural Engineering and Mechanics
    • /
    • v.70 no.1
    • /
    • pp.113-123
    • /
    • 2019
  • In the classical stability investigation of rectangular plates the classical thin plate theory (CPT) is often employed, so omitting the transverse shear deformation effect. It seems quite clear that this procedure is not totally appropriate for the investigation of moderately thick plates, so that in the following the first shear deformation theory proposed by Meksi et al. (2015), that permits to consider the transverse shear deformation influences, is used for the stability investigation of simply supported isotropic rectangular plates subjected to uni-axial and bi-axial compression loading. The obtained results are compared with those of CPT and, for rectangular plates under uniaxial compression, a novel direct formula, similar to the conventional Bryan's expression, is found for the Euler stability stress. The accuracy of the present model is also ascertained by comparing it, with model proposed by Piscopo (2010).