• Title/Summary/Keyword: SIDI

Search Result 450, Processing Time 0.021 seconds

A new nonlocal HSDT for analysis of stability of single layer graphene sheet

  • Bouadi, Abed;Bousahla, Abdelmoumen Anis;Houari, Mohammed Sid Ahmed;Heireche, Houari;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.6 no.2
    • /
    • pp.147-162
    • /
    • 2018
  • A new nonlocal higher order shear deformation theory (HSDT) is developed for buckling properties of single graphene sheet. The proposed nonlocal HSDT contains a new displacement field which incorporates undetermined integral terms and contains only two variables. The length scale parameter is considered in the present formulation by employing the nonlocal differential constitutive relations of Eringen. Closed-form solutions for critical buckling forces of the graphene sheets are obtained. Nonlocal elasticity theories are used to bring out the small scale influence on the critical buckling force of graphene sheets. Influences of length scale parameter, length, thickness of the graphene sheets and shear deformation on the critical buckling force have been examined.

A simple hyperbolic shear deformation theory for vibration analysis of thick functionally graded rectangular plates resting on elastic foundations

  • Saidi, Hayat;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis
    • Geomechanics and Engineering
    • /
    • v.11 no.2
    • /
    • pp.289-307
    • /
    • 2016
  • A simple hyperbolic shear deformation theory taking into account transverse shear deformation effects is proposed for the free flexural vibration analysis of thick functionally graded plates resting on elastic foundations. By considering further supposition, the present formulation introduces only four unknowns and its governing equations are therefore reduced. Hamilton's principle is employed to obtain equations of motion and Navier-type analytical solutions for simply-supported plates are compared with the available solutions in literature to check the accuracy of the proposed theory. Numerical results are computed to examine the effects of the power-law index and side-to-thickness ratio on the natural frequencies.

Influence of porosity on the behavior of cement orthopaedic of total hip prosthesis

  • Ali, Benouis;Boualem, Serier;Smail, Benbarek
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.2 no.4
    • /
    • pp.197-206
    • /
    • 2015
  • This paper presents three-dimensional finite element method analyses of the distribution of equivalents stress of Von Mises. Induced around a cavity located in the bone cement polymethylmethacrylate (PMMA). The presences and effect of its position in the cement was demonstrated, thus on the stress level and distribution. The porosity interaction depending on their positions, and their orientations on the interdistances their mechanical behaviour of bone cement effects were analysed. The obtained results show that micro-porosity located in the proximal and distal zone of the prosthesis is subject to higher stress field. We show that the breaking strain of the cement is largely taken when the cement, containing the porosities very close adjacent to each other.

Influence of material composition on buckling response of FG plates using a simple plate integral model

  • Bakhti, Karima;Sekkal, Mohamed;Adda Bedia, E.A.;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • v.25 no.4
    • /
    • pp.447-457
    • /
    • 2020
  • In this study, a simple two-dimensional shear deformation model is employed for buckling analysis of functionally graded (FG) plates. The proposed theory has a kinematic with integral terms which considers the influence of shear deformation without using "shear correction factors". The impact of varying material properties and volume fraction of the constituent on buckling response of the FG plate is examined and discussed. The benefit of this theory over other contributions is that a number of variables is reduced. The basic equations that consider the influence of transverse shear stresses are derived from the principle of virtual displacements. The analytical solutions are obtained utilizing the "Navier method". The accuracy of the proposed theory is proved by comparisons with the different solutions found in the literature.

A novel and simple higher order shear deformation theory for stability and vibration of functionally graded sandwich plate

  • Sekkal, Mohamed;Fahsi, Bouazza;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.25 no.4
    • /
    • pp.389-401
    • /
    • 2017
  • In this work, a new higher shear deformation theory (HSDT) is developed for the free vibration and buckling of functionally graded (FG) sandwich plates. The proposed theory presents a new displacement field by using undetermined integral terms. Only four unknowns are employed in this theory, which is less than the classical first shear deformation theory (FSDT) and others HSDTs. Equations of motion are obtained via Hamilton's principle. The analytical solutions of FG sandwich plates are determined by employing the Navier method. A good agreement between the computed results and the available solutions of existing HSDTs is found to prove the accuracy of the developed theory.

A novel four variable refined plate theory for laminated composite plates

  • Merdaci, Slimane;Tounsi, Abdelouahed;Bakora, Ahmed
    • Steel and Composite Structures
    • /
    • v.22 no.4
    • /
    • pp.713-732
    • /
    • 2016
  • A novel four variable refined plate theory is proposed in this work for laminated composite plates. The theory considers a parabolic distribution of the transverse shear strains, and respects the zero traction boundary conditions on the surfaces of the plate without employing shear correction coefficient. The displacement field is based on a novel kinematic in which the undetermined integral terms are used, and only four unknowns are involved. The analytical solutions of antisymmetric cross-ply and angle-ply laminates are determined via Navier technique. The obtained results from the present model are compared with three-dimensional elasticity solutions and results of the first-order and the other higher-order theories reported in the literature. It can be concluded that the developed theory is accurate and simple in investigating the bending and buckling responses of laminated composite plates.

Bending analysis of advanced composite plates using a new quasi 3D plate theory

  • Houari, Tarek;Bessaim, Aicha;Houari, Mohammed Sid Ahmed;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.26 no.5
    • /
    • pp.557-572
    • /
    • 2018
  • In this paper, a refined higher-order shear deformation theory including the stretching effect is developed for the analysis of bending analysis of the simply supported functionally graded (FG) sandwich plates resting on elastic foundation. This theory has only five unknowns, which is even less than the other shear and normal deformation theories. The theory presented is variationally consistent, without the shear correction factor. The present one has a new displacement field which introduces undetermined integral variables. Equations of motion are obtained by utilizing the Hamilton's principles and solved via Navier's procedure. The convergence and the validation of the proposed theoretical numerical model are performed to demonstrate the efficacy of the model.

On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams

  • Tagrara, S.H.;Benachour, Abdelkader;Bouiadjra, Mohamed Bachir;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1259-1277
    • /
    • 2015
  • In this work, a trigonometric refined beam theory for the bending, buckling and free vibration analysis of carbon nanotube-reinforced composite (CNTRC) beams resting on elastic foundation is developed. The significant feature of this model is that, in addition to including the shear deformation effect, it deals with only 3 unknowns as the Timoshenko beam (TBM) without including a shear correction factor. The single-walled carbon nanotubes (SWCNTs) are aligned and distributed in polymeric matrix with different patterns of reinforcement. The material properties of the CNTRC beams are assessed by employing the rule of mixture. To examine accuracy of the present theory, several comparison studies are investigated. Furthermore, the effects of different parameters of the beam on the bending, buckling and free vibration responses of CNTRC beam are discussed.

Dynamic behaviour of stiffened and damaged coupled shear walls

  • Meftah, S.A.;Tounsi, A.;Adda-Bedia, E.A.
    • Computers and Concrete
    • /
    • v.3 no.5
    • /
    • pp.285-299
    • /
    • 2006
  • The free vibration of stiffened and damaged coupled shear walls is investigated using the mixed finite element method. The anisotropic damage model is adopted to describe the damage extent of the reinforced concrete shear wall element. The internal energy of a locally damaged shear wall element is derived. Polynomial shape functions established by Kwan are used to present the component of displacements vector on each point within the wall element. The principle of virtual work is employed to deduce the stiffness matrix of a damaged shear wall element. The stiffened system is reinforced by an additional stiffening beam at some level of the structure. This induces additional axial forces, and thus reduces the bending moments in the walls and the lateral deflection, and increases the natural frequencies. The effects of the damage extent and the stiffening beam on the free vibration characteristics of the structure are studied. The optimal location of the stiffening beam for increasing as far as possible the first natural frequency of vibration is presented.

Numerical analysis of crack propagation in cement PMMA: application of SED approach

  • Ali, Benouis;Abdelkader, Boulenouar;Noureddine, Benseddiq;Boualem, Serier
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.93-109
    • /
    • 2015
  • Finite element analysis (FEA) combined with the concepts of linear elastic fracture mechanics (LEFM) provides a practical and convenient means to study the fracture and crack growth of materials. In this paper, a numerical modeling of crack propagation in the cement mantle of the reconstructed acetabulum is presented. This work is based on the implementation of the displacement extrapolation method (DEM) and the strain energy density (SED) theory in a finite element code. At each crack increment length, the kinking angle is evaluated as a function of stress intensity factors (SIFs). In this paper, we analyzed the mechanical behavior of cracks initiated in the cement mantle by evaluating the SIFs. The effect of the defect on the crack propagation path was highlighted.