• Title/Summary/Keyword: SIDI

Search Result 450, Processing Time 0.021 seconds

A new simple shear and normal deformations theory for functionally graded beams

  • Bourada, Mohamed;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.409-423
    • /
    • 2015
  • In the present work, a simple and refined trigonometric higher-order beam theory is developed for bending and vibration of functionally graded beams. The beauty of this theory is that, in addition to modeling the displacement field with only 3 unknowns as in Timoshenko beam theory, the thickness stretching effect (${\varepsilon}_Z{\neq}0$) is also included in the present theory. Thus, the present refined beam theory has fewer number of unknowns and equations of motion than the other shear and normal deformations theories, and it considers also the transverse shear deformation effects without requiring shear correction factors. The neutral surface position for such beams in which the material properties vary in the thickness direction is determined. Based on the present refined trigonometric higher-order beam theory and the neutral surface concept, the equations of motion are derived from Hamilton's principle. Numerical results of the present theory are compared with other theories to show the effect of the inclusion of transverse normal strain on the deflections and stresses.

Thermomechanical bending study for functionally graded sandwich plates using a simple quasi-3D shear deformation theory

  • Zarga, Djaloul;Tounsi, Abdelouahed;Bousahla, Abdelmoumen Anis;Bourada, Fouad;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.389-410
    • /
    • 2019
  • In this article, a simple quasi-3D shear deformation theory is employed for thermo-mechanical bending analysis of functionally graded material (FGM) sandwich plates. The displacement field is defined using only 5 variables as the first order shear deformation theory (FSDT). Unlike the other high order shear deformation theories (HSDTs), the present formulation considers a new kinematic which includes undetermined integral variables. The governing equations are determined based on the principle of virtual work and then they are solved via Navier method. Analytical solutions are proposed to provide the deflections and stresses of simply supported FGM sandwich structures. Comparative examples are presented to demonstrate the accuracy of the present theory. The effects of gradient index, geometrical parameters and thermal load on thermo-mechanical bending response of the FG sandwich plates are examined.

A novel refined shear deformation theory for the buckling analysis of thick isotropic plates

  • Fellah, M.;Draiche, Kada;Houar, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Saeed, Tareq;Alhodaly, Mohammed Sh.;Benguediab, Mohamed
    • Structural Engineering and Mechanics
    • /
    • v.69 no.3
    • /
    • pp.335-345
    • /
    • 2019
  • In present study, a novel refined hyperbolic shear deformation theory is proposed for the buckling analysis of thick isotropic plates. The new displacement field is constructed with only two unknowns, as against three or more in other higher order shear deformation theories. However, the hyperbolic sine function is assigned according to the shearing stress distribution across the plate thickness, and satisfies the zero traction boundary conditions on the top and bottom surfaces of the plate without using any shear correction factors. The equations of motion associated with the present theory are obtained using the principle of virtual work. The analytical solution of the buckling of simply supported plates subjected to uniaxial and biaxial loading conditions was obtained using the Navier method. The critical buckling load results for thick isotropic square plates are compared with various available results in the literature given by other theories. From the present analysis, it can be concluded that the proposed theory is accurate and efficient in predicting the buckling response of isotropic plates.

Initiation and propagation of a crack in the orthopedic cement of a THR using XFEM

  • Gasmi, Bachir;Abderrahmene, Sahli;Smail, Benbarek;Benaoumeur, Aour
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.295-305
    • /
    • 2019
  • The sealing cement of total hip arthroplasty is the most widely used binder in orthopedic surgery for anchoring implants to their recipient bones. Nevertheless, this latter remains a fragile material with weak mechanical properties. Inside this material cracks initiate from cavities. These cracks propagate under the effect of fatigue and lead to the failure of this binder and consequently the loosening of the prosthesis. In this context, this work consists to predict the position of cracks initiation and their propagations path using the Extended Finite Element Method (XFEM). The results show that cracks can only be initiated from a sharp edges of an ellipsoidal cavity which the ratio of the minor axis over the major axis is equal to 0.1. A maximum crack length of 19 ?m found for a cavity situated in the proximal zone position under a static loading. All cracks propagate in same(almost) way regardless of the cavity(site of initiation) position and its inclination in the proximal zone.

A simple HSDT for bending, buckling and dynamic behavior of laminated composite plates

  • Remil, Aicha;Benrahou, Kouider Halim;Draiche, Kada;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.70 no.3
    • /
    • pp.325-337
    • /
    • 2019
  • In the present article, cross ply laminated composite plates are considered and a simple sinusoidal shear deformation model is tested for analyzing their flexural, stability and dynamic behaviors. The model contains only four unknown variables that are five in the first order shear deformation theory (FSDT) or other higher order models. The in-plane kinematic utilizes undetermined integral terms to quantitatively express the shear deformation influence. In the proposed theory, the conditions of zero shear stress are respected at bottom and top faces of plates without considering the shear correction coefficient. Equations of motion according to the proposed formulation are deduced by employing the virtual work principle in its dynamic version. The analytical solution is determined via double trigonometric series proposed by Navier. The stresses, displacements, natural frequencies and critical buckling forces computed using present method are compared with other published data where a good agreement between results is demonstrated.

Investigation on thermal buckling of porous FG plate resting on elastic foundation via quasi 3D solution

  • Mekerbi, Mohamed;Benyoucef, Samir;Mahmoudi, Abdelkader;Bourada, Fouad;Tounsi, Abdelouahed
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.513-524
    • /
    • 2019
  • The present article deals with thermal buckling of functionally graded plates with porosity and resting on elastic foundation. The basic formulation is based on quasi 3D theory. The present theory contains only four unknowns and also accommodates the thickness stretching effect. Porosity-dependent material coefficients of the plate are compositionally graded throughout the thickness according to a modified micromechanical model. Different patterns of porosity distributions are considered. The thermal loads are assumed to be uniform, linear and non-linear temperature rises through the thickness direction. The plate is assumed to be simply supported on all edges. Various numerical examples are given to check the accuracy and reliability of the present solution, in which both the present results and those reported in the literature are provided. In addition, several numerous new results for thick FG plates with porosity are also presented.

Influences of porosity distributions and boundary conditions on mechanical bending response of functionally graded plates resting on Pasternak foundation

  • Guellil, Moustafa;Saidi, Hayat;Bourada, Fouad;Bousahla, Abdelmoumen Anis;Tounsi, Abdelouahed;Al-Zahrani, Mesfer Mohammad;Hussain, Muzamal;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.1-15
    • /
    • 2021
  • In this paper, a higher order shear deformation theory for bending analysis of functionally graded plates resting on Pasternak foundation and under various boundary conditions is exposed. The proposed theory is based on the assumption that porosities can be produced within functionally graded plate which may lead to decline in strength of materials. In this research a novel distribution of porosity according to the thickness of FG plate are supposing. Governing equations of the present theory are derived by employing the virtual work principle, and the closed-form solutions of functionally graded plates have been obtained using Navier solution. Numerical results for deflections and stresses of several types of boundary conditions are presented. The exactitude of the present study is confirmed by comparing the obtained results with those available in the literature. The effects of porosity parameter, slenderness ratio, foundation parameters, power law index and boundary condition types on the deflections and stresses are presented.

Buckling analysis of FG plates via 2D and quasi-3D refined shear deformation theories

  • Lemya Hanifi Hachemi Amar;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdelouahed Tounsi;Kouider Halim Benrahou;Hind Albalawi;Abdeldjebbar Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.85 no.6
    • /
    • pp.765-780
    • /
    • 2023
  • In this work, a novel combined logarithmic, secant and tangential 2D and quasi-3D refined higher order shear deformation theory is proposed to examine the buckling analysis of simply supported uniform functionally graded plates under uniaxial and biaxial loading. The proposed formulations contain a reduced number of variables compared to others similar solutions. The combined function employed in this study ensures automatically the zero-transverse shear stresses at the free surfaces of the structure. Various models of the material distributions are considered (linear, quadratic, cubic inverse quadratic and power-law). The differentials stability equations are derived via virtual work principle with including the stretching effect. The Navier's approach is applied to solve the governing equations which satisfying the boundary conditions. Several comparative and parametric studies are performed to illustrates the validity and efficacity of the proposed model and the various factors influencing the critical buckling load of thick FG plate.

Impact of bonding defect on the tensile response of a composite patch-repaired structure: Effect of the defect position and size

  • N., Kaddouri;K., Madani;S.CH., Djebbar;M., Belhouari;R.D.S.G., Campliho
    • Structural Engineering and Mechanics
    • /
    • v.84 no.6
    • /
    • pp.799-811
    • /
    • 2022
  • Adhesive bonding has seen rapid development in recent years, with emphasis to composite patch repairing processes of geometric defects in aeronautical structures. However, its use is still limited given its low resistance to climatic conditions and requirement of specialized labor to avoid fabrication induced defects, such as air bubbles, cracks, and cavities. This work aims to numerically analyze, by the finite element method, the failure behavior of a damaged plate, in the form of a bonding defect, and repaired by an adhesively bonded composite patch. The position and size of the defect were studied. The results of the numerical analysis clearly showed that the position of the defect in the adhesive layer has a large effect on the value of J-Integral. The reduction in the value of J-Integral is also related to the composite stacking sequence which, according to the mechanical properties of the ply, provides better load transfer from the plate to the repair piece through the adhesive. In addition, the increase in the applied load significantly affects the value of the J-Integral at the crack tip in the presence of a bonding defect, even for small dimensions, by reducing the load transfer.

Effect of shear stresses on the deflection and optimal configuration of a rectangular FGM structure

  • Ayoub El Amrani;Hafid Mataich;Jaouad El-Mekkaoui;Bouchta El Amrani
    • Coupled systems mechanics
    • /
    • v.12 no.4
    • /
    • pp.391-407
    • /
    • 2023
  • This paper presents a static study of a rectangular functional graded material (FGM) plate, simply supported on its four edges, adopting a refined higher order theory that looks for, only,four unknowns,without taking into account any corrective factor of the deformation energy with the satisfaction of the zero shear stress conditions on the upper and lower faces of the plate. We will have determined the contribution of these stresses in the transverse deflection of the plate, as well as their effects on the axial stress within the interfaces between the layers(to avoid any problem of imperfections such as delamination) and on the top and bottom edges of the plate in order to take into account the fatigue phenomenon when choosing the distribution law of the properties used during the design of the plate. A numerical statement, in percentage, of the contribution of the shear effect is made in order to show the reliability of the adopted theory. We will also have demonstrated the need to add the shear effect when the aspect ratio is small or large. Code routines are programmed to obtain numerical results illustrating the validity of the model proposed in the theory compared to those available in the literature.