• Title/Summary/Keyword: SI cycle

Search Result 601, Processing Time 0.027 seconds

Encapsulation of OLEDs Using Multi-Layers Consisting of Digital CVD $Si_3N_4$ and C:N Films

  • Seo, Jeong-Han;O, Jae-Eung;Seo, Sang-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.538-539
    • /
    • 2013
  • 여러 장점으로 인해 OLED는 디스플레이 및 조명 등 적용분야가 넓어지고 있지만, 수분 및 산소에 취약하여 그 수명이 제한되는 단점이 있다. 이를 해결하고자 현재까지는 glass cap을 이용한 encapsulation 기술이 적용되고 있지만, flexible 기판에 적용하지 못하는 문제가 있다. 이러한 문제를 해결하고자 여러 가지 thin film encapsulation 기술이 적용되고 있으나 보다 신뢰성이 높은 기술의 개발이 절실한 때이다. Encapsulation 무기 박막 물질로서 $Si_3N_4$ 박막은 PE-CVD (Plasma Enhanced Chemical Vapor Deposition) 등의 박막 증착법을 사용한 많은 연구가 진행되어, 저온에서의 좋은 품질의 박막 증착이 가능하지만, 100도 이하의 thermal budget을 갖는 OLED Encapsulation에 사용하기에는 충분하지 않았다. CVD 박막의 특성을 더욱 개선하기 위해 최근 ALD (Atomic Layer Deposition) 방법을 통한 $Al_2O_3$ film 증착 방법이 연구되고 있지만, 낮은 증착 속도로 인해 양산에 걸림돌이 되고 있다. 본 연구에서는 또 다른 해결책으로서 Digital CVD 방법을 이용한 양질의 $Si_3N_4$ 박막의 증착을 연구하였다. 이것은 ALD 증착법과 유사하며, 1st step에서 PECVD 방법으로 4~5 ${\AA}$의 얇은 silicon 박막을 증착하고, 2nd step에서 nitrogen plasma를 이용하여 질화 반응을 진행하고, 이러한 cycle을 원하는 두께가 될 때까지 반복적으로 진행된다. 이 때 1 cycle 당 증착속도는 7 ${\AA}$/cycle 정도였다. 최적의 증착 방법과 조건으로 기존의 CVD $Si_3N_4$ 박막 대비 1/5 이하로 pinhole을 최소화 할 수는 있지만 완벽하게 제거하기는 힘든 문제가 있고, 이를 해결하기 위한 개선을 위한 접근 방법이 필요하다고 판단하였다. 본 연구에서는 무기물 박막인 carbon nitride를 이용한 SiN/C:N multilayer 증착 연구를 진행하였다. Fig. 1은 CVD 조건으로 증착된 두께 750 nm SiN film에서 여러 층의 C:N film layer를 삽입했을 때, 38 시간의 85%/$85^{\circ}C$ 가속실험에 따라 OLED의 발광 사진이다. 그림에서 볼 수 있듯이 C:N 층을 삽입하고 또한 그 박막의 수가 증가함에 따라서 OLED에 대한 encapsulation 특성이 크게 개선됨을 확인할 수 있다.

  • PDF

$SO_2/O_2$ Separation Process with EMIm[$EtSO_4$] in SI Cycle for the Hydrogen Production by Water Splitting (물분해 수소제조를 위한 SI cycle에서의 EMIm[$EtSO_4$]를 이용한 $SO_2/O_2$ 분리공정)

  • Lee, Ki-Yong;Kim, Hong-Gon;Jung, Kwang-Deog;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.1
    • /
    • pp.13-20
    • /
    • 2011
  • $SO_2$ has been absorbed and separated selectively by an ionic liquid from $SO_2/O_2$ mixture decomposed from sulfuric acid during the thermochemical SI cycle for the water splitting. In order to design and operate high pressure $SO_2/O_2$ separation system, the solubility of $SO_2$ in [EMIm]$EtSO_4$ (1-ethyl-3-methylimidazolium ethylsulfate) has been measured by Magnetic Suspension Balance at high pressure and temperature. Based on the measured solubility, a pressurized separation system was set up and operated. 194 L/h of $SO_2$($SO_2:O_2$=0.65:1) has been separated with 99.85% of $O_2$ at the vent of absorption tower, which is 22.7% of the theoretically ideal capacity of the system. This discrepancy results from the reduced contact between the gaseous $SO_2$ and the ionic liquid. Increased $SO_2$ supply, scale-up of the absorption column, and a faster ionic liquid circulation speed were suggested to improve the separation capacity.

Study on Compound Humidifier Employing UV-LED using Environmental Life Cycle Assessment (환경전과정평가에 기반한 UV-LED 를 사용한 복합식 가습기에 관한 연구)

  • Choi, Won-Sik;Park, Si-Hyun;Lee, Si-Wang;Jung, Young-Mi;Yi, Hwa-Cho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.9
    • /
    • pp.931-937
    • /
    • 2012
  • In this study, we assessed environmental impacts of compound humidifiers using environmental life cycle assessment and presented the ways to improvements in energy consumption of them. We found eco-design parameters and $CO_2$-eq emissions in each stage of raw material acquisition, manufacturing, transportation, use and disuse in life cycle of the compound humidifiers. The highest $CO_2$ emission is found to be in the stage of use among all stages of life cycle, which is mainly due to power consumption in thermal heating of heating coil for sterilization during humidification. The power consumption and $CO_2$ emission in the stage of use can be reduced to 1/4 and 1/3 at the highest estimate through improvement of sterilization method, respectively. We suggested the replacement of conventional thermal heating coil by ultra violet light-emitting diodes (UV-LED) for sterilization and then presented the experimental results on the sterilization effects of UV-LEDs.

Tribological behavior of multi-layered diamond-like carbon films (다층 다이아몬드상 카본 필름의 윤활 및 마모 거동)

  • 김명근;이광렬;은광용
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.1
    • /
    • pp.59-65
    • /
    • 1998
  • Multi-layer diamond-like carbon (DLC) films were deposited by 13.56 MHz r.f. PACVD method. Multi-layer DLC film was composed of 2.5 $mu extrm{m}$ thick pure DLC filml and 0.2$\mu\textrm{m}$ thick Si incorporated DLC (Si-DLC) film as a surface layer. Tribological behaviors of the multi-layer DLC film were investigated with a ball-on-disk type tribometer in ambient atmosphere using AISI 52100 steel ball. Low friction coefficient (<0.1) period increased with increasing the Si content in the surface Si-DLC film. The wear rate after 44,000 cycles and 158,400 cycles were the $2.5\times10^{-8}\sim1.8\times10^{-7}\textrm{mm}^3$/rev. and $7.1\times10^{-9}\sim1.8\times10^{-8}\textrm{mm}^3$/rev.,respectively. The wear rate of the multi-layer DLC film after 158,400 cycles was about 2 times smaller than that of pure DLC films of 2.7 $\mu\textrm{m}$ thickness. This high wear resistance and low friction coefficient was caused by the formation of Si oxide layer on the wear scar surface, as confirmed by the debris composition analysis. It was further shown that this si oxide debris layer on the wear scar surface is formed again even after removing the debris of the steel ball, which maintain the low friction coefficient between multi-layer DLC films and steel ball.

  • PDF

Development of High Capacity Lithium Ion Battery Anode Material by Controlling Si Particle Size with Dry Milling Process (건식 분쇄 공정으로 Si 입도 제어를 통한 고용량 리튬이온전지 음극 소재의 개발)

  • Jeon, Do-Man;Na, Byung-Ki;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.24 no.4
    • /
    • pp.332-338
    • /
    • 2018
  • Currently graphite is used as an anode active material for lithium ion battery. However, since the maximum theoretical capacity of graphite is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of next generation high capacity and high energy density lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is about 10 times higher than the maximum theoretical capacity of graphite. However, since the volume expansion rate is almost 400%, the irreversible capacity increases as the cycle progresses and the discharge capacity relative to the charge is remarkably reduced. In order to solve these problems, it is possible to control the particle size of the Si anode active material to reduce the mechanical stress and the volume change of the reaction phase, thereby improving the cycle characteristics. Therefore, in order to minimize the decrease of the charge / discharge capacity according to the volume expansion rate of the Si particles, the improvement of the cycle characteristics was carried out by pulverizing Si by a dry method with excellent processing time and cost. In this paper, Si is controlled to nano size using vibrating mill and the physicochemical and electrochemical characteristics of the material are measured according to experimental variables.

$SO_3$ decomposition over Cu/Fe/$Al_2O_3$ granules with controlled size for hydrogen production in SI thermochemical cycle (황-요오도 열화학 수소제조 공정에서 다양한 크기의 Cu/Fe/$Al_2O_3$ 구형 촉매를 이용한 삼산화항 분해)

  • Yoo, Kye-Sang;Jung, Kwang-Deog
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.19 no.3
    • /
    • pp.226-231
    • /
    • 2008
  • Cu/Fe/$Al_2O_3$ granules with various sizes have been prepared by a combination of sol-gel and oil drop method for the use in sulfur trioxide decomposition, a subcycle in thermochemical sulfur-iodine cycle to split water in the hydrogen and oxygen. The size of composite granules have been mainly changed by the flow-rate of the gel mixture before dropping in the synthesis. The structural properties of the samples were comparable with granule size. In the reaction, the catalytic activity was enhanced by decreasing size in the entire reaction temperature ranges.

Effect of Thermo-mechanical Treatment on the Tensile Properties of Fe-20Mn-12Cr-3Ni-3Si Damping Alloy (Fe-20Mn-12Cr-3Ni-3Si 합금의 인장성질에 미치는 가공열처리의 영향)

  • Han, H.S.;Kang, C.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.32 no.2
    • /
    • pp.61-67
    • /
    • 2019
  • This study was carried out to investigate the effect of thermo-mechanical treatment on the tensile properties of Fe-20Mn-12Cr-3Ni-3Si alloy with deformation induced martensite transformation. ${\alpha}^{\prime}$ and ${\varepsilon}$-martensite, dislocation, stacking fault were formed, and grain size was refined by thermo-mechanical treatment. With the increasing cycle number of thermo-mechanical treatment, volume fraction of ${\varepsilon}$ and ${\alpha}^{\prime}$-martensite, dislocation, stacking fault were increased, and grain size decreased. In 5-cycle number thermo-mechanical treated specimens, more than 10% of the volume fraction of ${\varepsilon}$-martensite and less than 3% of the volume fraction of ${\alpha}^{\prime}$-martensite were attained. Tensile strength was increased and elongation was decreased with the increasing cycle number of thermo-mechanical treatment. Tensile properties of thermo-mechanical treated alloy with deformation induced martensite transformation was affected to formation of martensite by thermo-mechanical treatment, but was large affected to increasing of dislocation and grain refining.

The Research on Aluminum and Silcon Nanoparticles as Anode Materials for Lithium Ion Batteries (알루미늄 실리콘 나노분말을 이용한 리튬이온전지 음극재료에 관한 연구)

  • Kim, Hyeong-Jo;Tulugan, Kelimu;Kim, Hyung-Jin;Park, Won-Jo
    • Journal of Power System Engineering
    • /
    • v.17 no.1
    • /
    • pp.110-115
    • /
    • 2013
  • The electrochemical performance and microstructure of Al-Si, Al-Si/C was investigated as anode for lithium ion battery. The Al-Si nano composite with 5 : 1 at% ratio was prepared by arc-discharge nano powder process. However, some of problem is occurred, when Al nano composite was synthesized by this manufacturing. The oxidation film is generated around Al-Si particles for passivating processing in the manufacture. The oxidation film interrupts electrical chemistry reaction during lithium ion insertion/extraction for charge and discharge. Because of the existence the oxidation film, Al-Si first cycle capacity is very lower than other examples. Therefore, carbon synthsized by glucose ($C_6H_{12}O_6$) was conducted to remove the oxidation film covered on the composite. The results showed that the first discharge cycle capacity of Al-Si/C is improved to 113mAh/g comparing with Al-Si (18.6mAh/g). Furthermore, XRD data and TEM images indicate that $Al_4C_3$ crystalline exist in Al-Si/C composite. In addition the Si-Al anode material, in which silicon is more contained was tested by same method as above, it was investigated to check the anode capacity and morphology properties in accordance with changing content of silicon, Si-Al anode has much higher initial discharge capacity(about 500mAh/g) than anode materials based on Aluminum as well as the morphology properties is also very different with the anode based Aluminum.

Atomic Layer Deposition of Silicon Oxide Thin Film on $TiO_2$ nanopowders (원자층증착법에 의한 $TiO_2$ 나노파우더 표면의 실리콘 산화물 박막 증착)

  • Kim, Hee-Gyu;Kim, Hyung-Jong;Kang, In-Gu;Kim, Doe-Hyoung;Choi, Byung-Ho;Jung, Sang-Jin;Kim, Min-Wan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.381-381
    • /
    • 2009
  • 염료감응형 태양전지의 효율 향상을 위한 다양한 방법들 중 $TiO_2$ 나노 파우더의 표면 개질 및 페이스트의 분산성 향상을 위한 연구가 활발하게 진행되고 있다. 기존 나노 파우더의 표면 개질법으로는 액상 공정인 졸겔법이 있으나 표면 처리 공정에서의 응집현상은 아직 해결해야 할 과제 중 하나이다. 이에 본 연구에서는 진공증착방법인 ALD법을 이용하여 염료감응형 태양전지용 $TiO_2$ 나노 파우더의 $SiO_2$ 산화물 표면처리를 통한 분산특성을 파악하였다. 기존 ALD법의 경우 reactor의 온도가 $300{\sim}500^{\circ}C$ 정도의 고온에서 공정이 이루어졌지만 본 실험에서는 2차 아민계촉매(pyridine)을 사용하여 reactor의 온도를 $30^{\circ}C$정도의 저온공정에서 $SiO_2$ 산화물을 코팅을 하였다. MO source로는 액체상태의 TEOS$(Si(OC_2H_5)_4)$를, 반응가스로는 $H_2O$를 사용하였고, 불활성 기체인 Ar 가스는 purge 가스로 각각 사용 하였다. ALD 공정에 의해 표면처리 된 $TiO_2$ 나노 파우더의 분산특성은 각 공정 cycle에 따라 FESEM을 통하여 입자의 형상 및 분산성을 확인하였으며 입도 분석기를 통하여 부피의 변화 및 분산 특성을 확인하였다. 공정 cycle 이 증가함에 따라 입자간의 응집현상이 개선되는 것을 확인 할 수 있었으며, 100cycles에서 응집현상이 가장 많이 감소하는 것을 확인할 수 있었다. 또한 표면 처리된 $SiO_2$ 산화막은 XRD를 통한 결정 분석 및 EDX를 통한 정성 분석을 통하여 확인하였다.

  • PDF

Characterizations of Surface Textured Silicon Substrated by XeF2 Etching System (이불화제논 기상 식각에 의한 실리콘 기판의 표면 텍스쳐링 특성)

  • Kim, Seon-Hoon;Ki, Hyun-Chul;Kim, Doo-Gun;Na, Yong-Beom;Kim, Nam-Ho;Kim, Hwe-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.749-753
    • /
    • 2010
  • We investigated the haze and the surface roughness of textured Si substrates etched by $XeF_2$ etching system with the etching parameters of $XeF_2$ pressure, etching time, and etching cycle. Here the haze was obtained as a function of wavelength from the measured reflectance. The haze of textured Si substrates was strongly affected by the etching parameter of etching cycle. The surface roughness of textured Si substrates was calculated with the haze and the scalar scattering theory at the wavelength of 800 nm. Then, the surface roughness was compared with that measured by atomic force microscope. The surce roughness obtained by two methods was changed with the similar tendency n terms of $XeF_2$ etching conditions.