• 제목/요약/키워드: SI Separation

검색결과 340건 처리시간 0.028초

The Numerical Simulation of a 8-Channel Optical Wavelength Division Multiplexer with Channel Spacing $\Delta\lambda$=0.8 nm

  • Kim, Sang-Duk;Ku, Dae-Sung;Yun, Jung-Hyun;Lee, Jae-Gyu;Kim, Jong-Bin
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.1-4
    • /
    • 2002
  • The numerical alaysis of optical device, silicabased device, are presented. The purpose of this paper is to simulate and to design a 8-channel optical wavelength division multiplexer(OWDM) based on Mach-Zehnder Interferometer(MZI) with wavelength spacing between channels Δλ=0.8 nm at central wavelength λ=1.55 ${\mu}{\textrm}{m}$. In initial condition fur simulating, we assumed as follows. A channel waveguide is made from silica based P-doped SiO2 core layers in order to coupling with a fiber easily and its core dimension was 6 ${\mu}{\textrm}{m}$$\times$6 ${\mu}{\textrm}{m}$. The core and clad index of channel waveguide were 1.455 and 1.444, separately, at λ=1.55 ${\mu}{\textrm}{m}$. Where, the separation between channel waveguides in coupling region was 3 ${\mu}{\textrm}{m}$. As a result of analysis, a group mode index of channel waveguide was 1.4498370, was gained by Hermite-Gaussian Method(HGM). Also, the channel spacing was determined by the waveguide arm length difference and was Δλ=0.8 nm as like a proposed condition. The central wavelength of a designed-multiplexer was activated about wavelength λ=1.55 ${\mu}{\textrm}{m}$, and we certificated that it can be used to 8-channel optical wavelength division multiplexer/demultiplexer.

  • PDF

Contact Resistance and Leakage Current of GaN Devices with Annealed Ti/Al/Mo/Au Ohmic Contacts

  • Ha, Min-Woo;Choi, Kangmin;Jo, Yoo Jin;Jin, Hyun Soo;Park, Tae Joo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권2호
    • /
    • pp.179-184
    • /
    • 2016
  • In recent years, the on-resistance, power loss and cell density of Si power devices have not exhibited significant improvements, and performance is approaching the material limits. GaN is considered an attractive material for future high-power applications because of the wide band-gap, large breakdown field, high electron mobility, high switching speed and low on-resistance. Here we report on the Ohmic contact resistance and reverse-bias characteristics of AlGaN/GaN Schottky barrier diodes with and without annealing. Annealing in oxygen at $500^{\circ}C$ resulted in an increase in the breakdown voltage from 641 to 1,172 V for devices with an anode-cathode separation of $20{\mu}m$. However, these annealing conditions also resulted in an increase in the contact resistance of $0.183{\Omega}-mm$, which is attributed to oxidation of the metal contacts. Auger electron spectroscopy revealed diffusion of oxygen and Au into the AlGaN and GaN layers following annealing. The improved reverse-bias characteristics following annealing in oxygen are attributed to passivation of dangling bonds and plasma damage due to interactions between oxygen and GaN/AlGaN. Thermal annealing is therefore useful during the fabrication of high-voltage GaN devices, but the effects on the Ohmic contact resistance should be considered.

이산화질소-오존을 이용한 니트로화 반응의 Scale-up 연구 (A Study on the Scale-up Test for the Nitration Process using NO2-O3)

  • 조진구;김영태;성시영;정규현;이본수;김영규;이윤식
    • 공업화학
    • /
    • 제10권7호
    • /
    • pp.1092-1095
    • /
    • 1999
  • 기존의 혼산 공정으로 방향족 니트로 화합물을 얻는 방법은 묽은 황산이 주성분인 폐산을 처리해야 한다. 폐황산이 발생하지 않는 질산, 이산화질소와 오존을 사용하는 새로운 니트로화 공정을 3 mol 규모로 시험하였다. 디클로로에탄, p-니트로톨루엔 3 mol과 질산 6 mol의 혼합용액에 이산화질소 14.3 mol을 3번에 나누어 투입하고 오존을 0.871 mol/h의 유속으로 주입시키면 5.5시간만에 97% 이상의 전환율을 보였다. 이 방법은 일부 방향족 화합물의 니트로화 반응에서 기존의 혼산 공정을 대체할 수 있을 것이다.

  • PDF

Development of Schizogenous and Lysigenous Aerenchyma in Rice Root

  • Kang, Si-Yong;Wada, Tomikichi;Choi, Kwan-Sam
    • 한국작물학회지
    • /
    • 제43권2호
    • /
    • pp.77-82
    • /
    • 1998
  • Aerenchyma development in rice (Oryza sativa L.) roots is quite important for adaptation to waterlogged or reduced soil conditions. Anatomical observations were carried out to clarify the development of schizogenous and lysigenous aerenchyma in elongating crown roots of rice. The crown roots of 3rd and 4th phytomer were taken from rice plants of the 8th leaf stage grown by hydroponic culture. The schizogenous intercellular spaces in the cortex of crown root tip were observed using a light microscope with semi ultra-thin sections and the lysigenous aerenchyma in mature tissue of crown root were observed using a cryo scanning electron microscope (cryo-SEM) with freezing fracture method. The schizogenous intercellular spaces in the root tip exist obviously in the middle portion of cortical cell layers close to the root-root cap junction, but not in root cap, stele and outer cell layers of cortex. The air spaces were formed at the junction of four neighbouring cells of inner cortex in the transverse sections, and between longitudinal cell layer connected along the root axis. Although many of those spaces were filled with liquid, some spaces seem to exist as air spaces. The lysigenous aerenchyma in the cortex, which hardly filled with liquid, emerged at 3-4 cm segment from the root tip and increased toward the basal region of root axis. The developing process of lysigenous aerenchyma was primarily separation of a radial row of cells caused by the shrinking and collapsing of cortical cells and then formation of septa along the radial cell rows by the fusion of cell wall with each other. These results suggest that the schizogenous and lysigenous aerenchyma playa role as a passage for the movement of oxygen into the root tip region where oxygen is required for respiration.

  • PDF

The Effect of Expanded Rice Hulls as a Root Substrate on the Suppression of Anthracnose Crown Rot in Strawberry

  • Park, Gab Soon;Nam, Myeong Hyeon;Choi, Jong Myung
    • 원예과학기술지
    • /
    • 제34권2호
    • /
    • pp.242-248
    • /
    • 2016
  • This research was conducted to determine the effects of four different substrates, expanded rice hulls (ERH), commercial substrates for strawberries (CSS), clay sand (CS), and loamy sand (LS), on the inhibition of anthracnose crown rot (ACR) in strawberry. Mother plants of 'Seolhyang' strawberry were transplanted into an elevated bed in March, 2013 and March, 2014 and the runners connecting mother plants and daughter plants were cut in early August of both years. After separation, growth characteristics of the daughter plants were measured and then each daughter plant was inoculated with conidial suspensions of Colletotrichum fructicola, one of several species of Colletotrichum that causes ACR in strawberries. The incidence of ACR as influenced by the different substrates was investigated in both years. The daughter plants grown on CSS had the highest values for shoot height, leaf area, and fresh weight. Those grown on ERH and LS substrates also displayed good above-ground growth characteristics except for fresh weight, but the daughter plants grown on CS had the poorest above-ground growth characteristics. The ERH and CS treatments resulted in the highest number of primary roots and the greatest root weight. The CSS-grown daughter plants had the highest ACR disease index, followed by the CS and LS treatments, but there were no significant differences among the three substrates. However, the ERH-grown daughter plants had a markedly lower ACR disease index on October 11, 2013 and October 7, 2014. The CSS-grown daughter plants had high nitrogen and potassium contents and low calcium content, whereas the ERH-grown daughter plants had low nitrogen levels and high silicon levels. The results of this study provide basic information on the ability of the different substrates tested to provide disease suppression of ACR in the propagation of strawberry transplants.

하동화력발전소 비산재의 입도크기와 미연탄소 함량이 지오폴리머의 압축강도에 미치는 영향 (Effect of Particle Size and Unburned Carbon Content of Fly Ash from Hadong Power Plant on Compressive Strength of Geopolymers)

  • 강남희;전철민;주형태;이수정
    • 한국재료학회지
    • /
    • 제23권9호
    • /
    • pp.510-516
    • /
    • 2013
  • Fly ash is one of the aluminosilicate sources used for the synthesis of geopolymers. The particle size distribution of fly ash and the content of unburned carbon residue are known to affect the compressive strength of geopolymers. In this study, the effects of particle size and unburned carbon content of fly ash on the compressive strength of geopolymers have been studied over a compositional range in geopolymer gels. Unburned carbon was effectively separated in the $-46{\mu}m$ fraction using an air classifier and the fixed carbon content declined from 3.04 wt% to 0.06 wt%. The mean particle size ($d_{50}$) decreased from $22.17{\mu}m$ to $10.79{\mu}m$. Size separation of fly ash by air classification resulted in reduced particle size and carbon residue content with a collateral increase in reactivity with alkali activators. Geopolymers produced from carbon-free ash, which was separated by air classification, developed up to 50 % higher compressive strength compared to geopolymers synthesized from raw ash. It was presumed that porous carbon particles hinder geopolymerization by trapping vitreous spheres in the pores of carbon particles and allowing them to remain intact in spite of alkaline attack. The microstructure of the geopolymers did not vary considerably with compressive strength, but the highest connectivity of the geopolymer gel network was achieved when the Si/Al ratio of the geopolymer gel was 5.0.

잔류응력과 계면접합강도를 고려한 금속복합재료의 열탄소성 변형 해석 (Thermal Elasto-Plastic Deformation Analysis of Metal Matrix Composites Considering Residual Stress and Interface Bonding Strength)

  • 강충길;서영호
    • 한국정밀공학회지
    • /
    • 제16권1호통권94호
    • /
    • pp.227-237
    • /
    • 1999
  • As the interface bonding phenomenon between the matrix and the reinforcements has a large effect on the mechanical properties of MMCs, a sugestion of the strength analysis technique considering the residual stress and the interface bonding phenomenon is very important for the design of pans and the estimation of fatigue behavior. In this paper the three dimensional finite element anaysis is performed during the elasto-plastic deformation of the particulate reinforced metal matrix composites. It was analyzed with the volume fractions in view of microscale. Bonding strength. interface separation and matrix void growth between the matrix and the reinforcements will be predicted on deformation under tensile loading. An interface seperation is estimated by the fracture criterion which is a critical value of generalized plastic work per unit volume. The shape of the reinforcement is assumed to be a perfect sphere. And the type of the reinforcement distribution is assumed as FCC array. The thermal residual stress in MMCs is induced by the heat treatment. It is included at the simulation as an initial residual stress. The element birth and death method of the ANSYS program is used for the estimation of the interface bonding strength, void generation and propagation. It is assumed that the fracture in the matrix region begin to occur under the external loading when the plastic work per unit volume is equal to the critical value. The fracture strain will be defined. The experimental data of the extruded $SiC_p$>/606l Al composites are compared with the theoretical results.

  • PDF

열 나노임프린트 리소그래피에서 사용되는 스탬프와 폴리머 재료 사이의 점착 특성 (Adhesion Characteristics between Stamp and Polymer Materials Used in Thermal Nanoimprint Lithography)

  • 김광섭;강지훈;김경웅
    • Tribology and Lubricants
    • /
    • 제22권4호
    • /
    • pp.182-189
    • /
    • 2006
  • In this paper, the adhesion characteristics between a fused silica without or with an anti-sticking layer and a thermoplastic polymer film used in thermal NIL were investigated experimentally in order to identify the release performance of the anti-sticking layer. The anti-sticking layers were derived from fluoroalkylsilanes, (1H, 1 H, 2H, 2H-perfluorooctyl)trichlorosilane ($F_{13}-OTS$) and (3, 3, 3-trifluoropropyl)trichlorosilane (FPTS), and coated on the silica surface in vapor phase. The commercial polymers, mr-I 7020 and 8020 (micro resist technology, GmbH), for thermal NIL were spin-coated on Si substrate with a rectangular island which was fabricated by conventional microfabrication process to achieve small contact area and easy alignment of flat contact sur- faces. Experimental conditions were similar to the process conditions of thermal NIL. When the polymer film on the island was separated from the silica surface after imprint process, the adhesion force between the silica surface and the polymer film was measured and the surfaces of the silica and the polymer film after the separation were observed. As a result, the anti-sticking layers remarkably reduced the adhesion force and the surface damage of polymer film and the chain length of silane affects the adhesion characteristics. The anti-sticking layers derived from FPTS and $F_{13}-OTS$ reduced the adhesion force per unit area to 38% and 16% of the silica sur-faces without an anti-sticking layer, respectively. The anti-sticking layer derived from $F_{13}-OTS$ was more effective to reduce the adhesion, while both of the anti-sticking layers prevented the surface damages of the polymer film. Finally, it is also found that the adhesion characteristics of mr-I 7020 and mr-I 8020 polymer films were similar with each other.

Optical Probing of Electronic Interaction between Graphene and Hexagonal Boron Nitride (hBN)

  • Ahn, Gwanghyun;Kim, Hye Ri;Ko, Taeg Yeoung;Choi, Kyoungjun;Watanabe, Kenji;Taniguchi, Takashi;Hong, Byung Hee;Ryu, Sunmin
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.213-213
    • /
    • 2013
  • Even weak van der Waals (vdW) adhesion between two-dimensional solids may perturbtheir various materials properties owing to their low dimensionality. Although the electronic structure of graphene has been predicted to be modified by the vdW interaction with other materials, its optical characterization has not been successful. In this report, we demonstrate that Raman spectroscopy can be utilized to detect a few % decrease in the Fermi velocity ($v_F$) of graphene caused by the vdW interaction with underlying hexagonal boron nitride (hBN). Our study also establishes Raman spectroscopic analysis which enables separation of the effects by the vdW interaction from those by mechanical strain or extra charge carriers. The analysis reveals that spectral features of graphene on hBN are mainly affected by change in vF and mechanical strain, but not by charge doping unlike graphene supported on $SiO_2$ substrates. Graphene on hBN was also found to be less susceptible to thermally induced hole doping.

  • PDF

Biomechanical stability of internal bone-level implant: Dependency on hex or non-hex structure

  • Lee, Hyeonjong;Park, Si-Myung;Noh, Kwantae;Ahn, Su-Jin;Shin, Sangkyun;Noh, Gunwoo
    • Structural Engineering and Mechanics
    • /
    • 제74권4호
    • /
    • pp.567-576
    • /
    • 2020
  • Considerable controversy surrounds the choice of the best abutment type for implant prosthetics. The two most common structures are hex and non-hex abutments. The non-hex abutment typically furnishes a larger contact area between itself and the implant than that provided by a hex structure. However, when a hex abutment is loaded, the position of its contact area may be deeper than that of a non-hex abutment. Hence, the purpose of this study is to determine the different biomechanical behaviors of an internal bone-level implant based on the abutment type-hex or non-hex-and clinical crown length under static and cyclic loadings using finite element analysis (FEA). The hex structure was found to increase the implant and abutment stability more than the nonhex structure among several criteria. The use of the hex structure resulted in a smaller volume of bone tissues being at risk of hypertrophy and fatigue failure. It also reduced micromovement (separation) between the implant components, which is significantly related to the pumping effect and possible inflammation. Both static and fatigue analyses, used to examine short- and long-term stability, demonstrated the advantages of the hex abutment over the non-hex type for the stability of the implant components. Moreover, although its impact was not as significant as that of the abutment type, a large crown-implant ratio (CIR) increased bone strain and stress in the implant components, particularly under oblique loading.